PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 February 1; 65(Pt 2): o348.
Published online 2009 January 17. doi:  10.1107/S1600536809001809
PMCID: PMC2968144

2-(4-Nitro­phen­yl)-1,3-dithiane

Abstract

The nitro group in the title compound, C10H11NO2S2, is almost coplanar with the benzene ring, making a dihedral angle of 3.42 (8)°. The 1,3-dithiane ring adopts a chair conformation. The crystal structure is stabilized by inter­molecular C—H(...)O and C—H(...)π [C(...)Cg = 3.4972 (10) Å] inter­actions.

Related literature

For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]). For the calculation of ring puckering parameters, see: Cremer & Pople (1975 [triangle]). For related literature and applications see, for example: Goswami & Maity (2008 [triangle]); Fun et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o348-scheme1.jpg

Experimental

Crystal data

  • C10H11NO2S2
  • M r = 241.32
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o348-efi1.jpg
  • a = 8.7724 (1) Å
  • b = 10.2079 (1) Å
  • c = 11.9942 (1) Å
  • V = 1074.05 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.47 mm−1
  • T = 100 (1) K
  • 0.46 × 0.22 × 0.08 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.813, T max = 0.964
  • 30643 measured reflections
  • 4725 independent reflections
  • 4511 reflections with I > 2σ(I)
  • R int = 0.038

Refinement

  • R[F 2 > 2σ(F 2)] = 0.024
  • wR(F 2) = 0.061
  • S = 1.06
  • 4725 reflections
  • 136 parameters
  • H-atom parameters constrained
  • Δρmax = 0.33 e Å−3
  • Δρmin = −0.25 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 2050 Friedel pairs
  • Flack parameter: 0.01 (4)

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809001809/tk2357sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809001809/tk2357Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for Science Fund grant No. 305/PFIZIK/613312. ACM and SG acknowledge the DST (grant No. SR/S1/OC-13/2005), Government of India, for financial support. ACM thanks the UGC, Government of India, for a fellowship. The authors also thank the Universiti Sains Malaysia for Research University Golden Goose grant No. 1001/PFIZIK/811012.

supplementary crystallographic information

Comment

Thioacetal protection of carbonyl groups is of paramount importance in synthetic organic chemistry and hence, the development of novel thionation reactions remains of great interest (Goswami & Maity, 2008; Fun et al., 2009). In addition, thioacetals are also utilized as masked acyl anions or masked methylene functions in carbon-carbon bond forming reactions. Herein, we report the synthesis of 2-(4-nitro-phenyl)-[1,3]-dithiane (I) from 4-nitrobenzaldehyde using boron trifluoride etherate catalyst.

Compound (I), Fig. 1, comprises a single molecule in the asymmetric unit. The nitro group is almost coplanar with the benzene ring, making a dihedral angle of 3.42 (8)°. The thiacyclohexane ring adopts a chair conformation with the ring puckering parameters (Cremer & Pople, 1975) of Q = 0.7137 (8) Å, Θ = 173.96 (7)°, and Φ = 135.6 (7)°. The crystal structure is stabilized by intermolecular C—H···O and C—H···π interactions, Table 1.

Experimental

To a stirred dichloromethane (50 mL) solution, maintained at 273 K, of 4-nitrobenzaldehyde (500 mg, 3.31 mmol) and boron trifluoride etherate (0.5 mL) was added dropwise 1,3-propanedithiol (450 mg, 4.1 mmol) over 15 min. The mixture was stirred at room temperature for 4 h and the progress of the reaction monitored by TLC. After completion of the reaction, NaHCO3 solution was added carefully at room temperature to neutralize the mixture which was then extracted with dichloromethane. The organic layer was dried (anhydrous Na2SO4) and the solvent removed under reduced pressure. The crude product was purified by column chromatography using silica gel with 10% ethyl acetate in petroleum ether as eluant to afford (I) (674 mg, 84%) as a colourless crystalline solid along with the other thiane derivatives.

Refinement

All hydrogen atoms were positioned geometrically and refined with a riding model approximation with C—H = 0.93-0.98 Å, and with Uiso (H) = 1.2 Ueq (C).

Figures

Fig. 1.
The molecular structure of (I), showing 50% probability displacement ellipsoids and the atomic numbering.

Crystal data

C10H11NO2S2F(000) = 504
Mr = 241.32Dx = 1.492 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 9979 reflections
a = 8.7724 (1) Åθ = 2.6–38.5°
b = 10.2079 (1) ŵ = 0.47 mm1
c = 11.9942 (1) ÅT = 100 K
V = 1074.05 (2) Å3Block, colourless
Z = 40.46 × 0.22 × 0.08 mm

Data collection

Bruker SMART APEXII CCD area-detector diffractometer4725 independent reflections
Radiation source: fine-focus sealed tube4511 reflections with I > 2σ(I)
graphiteRint = 0.038
[var phi] and ω scansθmax = 35.0°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −14→14
Tmin = 0.813, Tmax = 0.964k = −16→16
30643 measured reflectionsl = −18→19

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.061w = 1/[σ2(Fo2) + (0.0321P)2 + 0.1305P] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
4725 reflectionsΔρmax = 0.33 e Å3
136 parametersΔρmin = −0.25 e Å3
0 restraintsAbsolute structure: Flack (1983), 2050 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.01 (4)

Special details

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.78978 (3)0.06239 (2)0.216265 (18)0.01399 (5)
S21.07695 (3)0.22170 (2)0.261209 (18)0.01492 (5)
O10.99728 (9)0.26901 (8)−0.32568 (6)0.01819 (14)
O21.12536 (10)0.08795 (8)−0.33808 (6)0.02137 (15)
N11.05536 (9)0.17161 (8)−0.28383 (7)0.01391 (13)
C10.80248 (11)0.03483 (9)0.36543 (8)0.01526 (16)
H1A0.70090.01820.39410.018*
H1B0.8631−0.04310.37850.018*
C20.87227 (11)0.14837 (10)0.43022 (8)0.01481 (15)
H2A0.81570.22760.41350.018*
H2B0.86180.13120.50940.018*
C31.03975 (11)0.17104 (11)0.40367 (8)0.01636 (17)
H3A1.09540.09070.41820.020*
H3B1.07900.23760.45380.020*
C40.99151 (10)0.08515 (9)0.18616 (7)0.01235 (15)
H4A1.04630.00460.20550.015*
C51.01013 (10)0.11049 (9)0.06296 (7)0.01189 (14)
C61.09657 (10)0.02450 (9)−0.00171 (7)0.01299 (15)
H6A1.1440−0.04680.03180.016*
C71.11247 (10)0.04450 (9)−0.11583 (8)0.01293 (15)
H7A1.1690−0.0131−0.15930.016*
C81.04185 (10)0.15252 (9)−0.16301 (7)0.01169 (14)
C90.95653 (11)0.24152 (9)−0.10131 (8)0.01406 (16)
H9A0.91140.3138−0.13510.017*
C100.94071 (11)0.21912 (9)0.01268 (7)0.01455 (15)
H10A0.88360.27680.05580.017*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.01279 (8)0.01716 (10)0.01201 (9)−0.00234 (7)−0.00105 (7)−0.00003 (8)
S20.01512 (9)0.01748 (10)0.01216 (9)−0.00450 (7)0.00056 (7)−0.00083 (7)
O10.0228 (3)0.0179 (3)0.0138 (3)0.0016 (3)−0.0017 (3)0.0050 (3)
O20.0286 (4)0.0219 (4)0.0136 (3)0.0056 (3)0.0052 (3)−0.0013 (3)
N10.0149 (3)0.0152 (3)0.0117 (3)−0.0013 (3)0.0008 (3)0.0010 (3)
C10.0167 (4)0.0169 (4)0.0121 (4)−0.0023 (3)0.0021 (3)0.0002 (3)
C20.0148 (4)0.0183 (4)0.0113 (4)−0.0002 (3)0.0016 (3)−0.0019 (3)
C30.0147 (4)0.0236 (4)0.0108 (4)−0.0019 (3)−0.0012 (3)−0.0010 (3)
C40.0133 (3)0.0137 (4)0.0100 (3)0.0006 (3)−0.0004 (3)0.0001 (3)
C50.0127 (3)0.0127 (3)0.0103 (3)0.0002 (3)−0.0003 (3)0.0006 (3)
C60.0142 (4)0.0128 (3)0.0120 (3)0.0023 (3)0.0001 (3)0.0017 (3)
C70.0130 (3)0.0134 (4)0.0124 (3)0.0009 (3)0.0007 (3)−0.0006 (3)
C80.0130 (3)0.0131 (4)0.0090 (3)−0.0012 (3)0.0005 (3)0.0008 (3)
C90.0169 (4)0.0130 (4)0.0123 (4)0.0025 (3)0.0000 (3)0.0015 (3)
C100.0182 (4)0.0139 (4)0.0116 (3)0.0034 (3)0.0007 (3)0.0000 (3)

Geometric parameters (Å, °)

S1—C11.8145 (9)C3—H3B0.9700
S1—C41.8210 (9)C4—C51.5090 (12)
S2—C31.8148 (10)C4—H4A0.9800
S2—C41.8208 (9)C5—C61.3953 (13)
O1—N11.2248 (10)C5—C101.4016 (13)
O2—N11.2368 (11)C6—C71.3910 (13)
N1—C81.4670 (11)C6—H6A0.9300
C1—C21.5238 (13)C7—C81.3855 (12)
C1—H1A0.9700C7—H7A0.9300
C1—H1B0.9700C8—C91.3905 (13)
C2—C31.5210 (13)C9—C101.3930 (13)
C2—H2A0.9700C9—H9A0.9300
C2—H2B0.9700C10—H10A0.9300
C3—H3A0.9700
C1—S1—C498.95 (4)C5—C4—S1108.74 (6)
C3—S2—C499.98 (4)S2—C4—S1113.56 (5)
O1—N1—O2123.46 (8)C5—C4—H4A108.8
O1—N1—C8118.63 (8)S2—C4—H4A108.8
O2—N1—C8117.91 (8)S1—C4—H4A108.8
C2—C1—S1114.18 (6)C6—C5—C10119.65 (8)
C2—C1—H1A108.7C6—C5—C4119.69 (8)
S1—C1—H1A108.7C10—C5—C4120.66 (8)
C2—C1—H1B108.7C7—C6—C5120.61 (8)
S1—C1—H1B108.7C7—C6—H6A119.7
H1A—C1—H1B107.6C5—C6—H6A119.7
C3—C2—C1113.39 (8)C8—C7—C6118.28 (8)
C3—C2—H2A108.9C8—C7—H7A120.9
C1—C2—H2A108.9C6—C7—H7A120.9
C3—C2—H2B108.9C7—C8—C9122.91 (8)
C1—C2—H2B108.9C7—C8—N1118.23 (8)
H2A—C2—H2B107.7C9—C8—N1118.85 (8)
C2—C3—S2114.47 (6)C8—C9—C10117.95 (8)
C2—C3—H3A108.6C8—C9—H9A121.0
S2—C3—H3A108.6C10—C9—H9A121.0
C2—C3—H3B108.6C9—C10—C5120.59 (8)
S2—C3—H3B108.6C9—C10—H10A119.7
H3A—C3—H3B107.6C5—C10—H10A119.7
C5—C4—S2107.96 (6)
C4—S1—C1—C260.04 (8)C4—C5—C6—C7178.61 (8)
S1—C1—C2—C3−66.54 (10)C5—C6—C7—C80.73 (13)
C1—C2—C3—S264.81 (10)C6—C7—C8—C90.18 (14)
C4—S2—C3—C2−57.45 (8)C6—C7—C8—N1−178.43 (8)
C3—S2—C4—C5179.49 (6)O1—N1—C8—C7−177.77 (8)
C3—S2—C4—S158.85 (6)O2—N1—C8—C72.17 (12)
C1—S1—C4—C5−179.95 (6)O1—N1—C8—C93.56 (12)
C1—S1—C4—S2−59.74 (6)O2—N1—C8—C9−176.50 (9)
S2—C4—C5—C6117.37 (8)C7—C8—C9—C10−0.79 (14)
S1—C4—C5—C6−119.01 (8)N1—C8—C9—C10177.81 (8)
S2—C4—C5—C10−63.01 (10)C8—C9—C10—C50.50 (14)
S1—C4—C5—C1060.60 (10)C6—C5—C10—C90.38 (14)
C10—C5—C6—C7−1.01 (14)C4—C5—C10—C9−179.24 (9)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C6—H6A···O2i0.932.593.3346 (12)137
C1—H1A···Cg1ii0.972.603.4972 (10)154

Symmetry codes: (i) −x+5/2, −y, z+1/2; (ii) −x+3/2, −y, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2357).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl 34, 1555-1573.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Fun, H.-K., Kia, R., Maity, A. C. & Goswami, S. (2009). Acta Cryst. E65, o173. [PMC free article] [PubMed]
  • Goswami, S. P. & Maity, A. C. (2008). Tetrahedron Lett.49, 3092–3096.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography