PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 February 1; 65(Pt 2): o238.
Published online 2009 January 8. doi:  10.1107/S1600536808043912
PMCID: PMC2968135

2,2,7,7-Tetra­methyl-1,2,3,6,7,8-hexa­hydro­cinnolino[5,4,3-cde]cinnoline

Abstract

The asymmetric unit of the title compound, C16H20N4, contains two half-mol­ecules, which are completed by crystallographic inversion symmetry. The pyridazine rings are conjugated and the cyclo­hexane rings adopt envelope conformations.

Related literature

For general background, see: Ischikawa et al. (1992 [triangle]); Labovitz et al. (1990 [triangle]); Mizutani, Shiroshita, Okuda et al. (1989 [triangle]); Patterson (1992 [triangle]); Coghlan et al. (1989 [triangle]); Mizutani, Shiroshita, Sakaki et al. (1989 [triangle]b); Munro & Bit (1987 [triangle]); Inoue et al. (1993 [triangle]); Tutsumi et al. (1992 [triangle]); Yokomoto et al. (1992 [triangle]); Miyamoto et al. (1990 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]). For ring-puckering parameters, see: Cremer & Pople (1975 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o238-scheme1.jpg

Experimental

Crystal data

  • C16H20N4
  • M r = 268.36
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o238-efi1.jpg
  • a = 12.819 (4) Å
  • b = 8.441 (3) Å
  • c = 13.310 (4) Å
  • β = 95.462 (5)°
  • V = 1433.7 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 298 (2) K
  • 0.33 × 0.28 × 0.21 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1998 [triangle]) T min = 0.975, T max = 0.984
  • 7218 measured reflections
  • 2518 independent reflections
  • 1416 reflections with I > 2σ(I)
  • R int = 0.048

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052
  • wR(F 2) = 0.179
  • S = 1.04
  • 2518 reflections
  • 185 parameters
  • H-atom parameters constrained
  • Δρmax = 0.18 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808043912/hk2606sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808043912/hk2606Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Natural Science Foundation of the China (No. 20672090) and the Natural Science Foundation of Jiangsu Province (No. BK2006033) for support.

supplementary crystallographic information

Comment

It is well known that six-membered nitrogen-containing heterocycles are abundant in numerous natural products that exhibit important biological properties. For example, cinnolines and their derivatives are widely used as agrochemical and pharmaceutical drugs (Ischikawa et al., 1992; Labovitz et al., 1990; Mizutani, Shiroshita, Okuda et al., 1989; Patterson, 1992; Coghlan et al., 1989; Mizutani, Shiroshita, Sakaki et al., 1989; Munro & Bit, 1987). They can act as microbicides, pollen suppressants, fungicides and herbicides in agrochemistry. They can also be used as bactericides in pharmaceutical industry (Inoue et al., 1993; Tutsumi et al., 1992; Yokomoto et al., 1992; Miyamoto et al., 1990). The chemistry of cinnolines has received much attention based on the above facts.

The asymmetric unit of the title compound contains two-halves of centrosymmetric molecules (Fig. 1). The bond lengths (Allen et al., 1987) and angles are within normal ranges. The pyridazine rings A (N1/N2/C1-C3/C2A) and C (N3/N4/C9-C11/C10B) are, of course, planar and they are oriented at a dihedral angle of 43.89 (3)° [symmetry codes: (A) 2 - x, -y, -z; (B) 1 - x, -y, -z]. The cyclohexene rings B (C1/C2/C5/C6/C3A/C4A) and D (C9/C10/C13/C14/C11B/C12B), having total puckering amplitudes, QT, of 0.579 (3) and 0.566 Å, respectively, half-chair conformations [[var phi] = -72.92 (3)° and θ = 103.84 (4)°; [var phi] = 110.31 (4)° and θ = 74.14 (4)°] (Cremer & Pople, 1975) [symmetry codes: (A) 2 - x, -y, -z; (B) 1 - x, -y, -z].

Experimental

The title compound was prepared by the reaction of 3,4,6,7-tetrahydro- 3,3,6,6,9-pentamethyl-2H-xanthene-1,8(5H,9H)-dione (2 mmol) and hydrazine hydrate (8 mmol, 80%) in ethanol (8 ml), stirring at 353 K (yield; 88%, m.p. 562-563 K). Crystals suitable for X-ray analysis were obtained from an ethanol solution by slow evaporation.

Refinement

H atoms were positioned geometrically, with C-H = 0.97 and 0.96 Å for methylene and methyl H and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for methylene H atoms.

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level [symmetry code (A): -x, -y, -z].

Crystal data

C16H20N4F(000) = 576
Mr = 268.36Dx = 1.243 Mg m3
Monoclinic, P21/nMelting point = 562–563 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 12.819 (4) ÅCell parameters from 1230 reflections
b = 8.441 (3) Åθ = 2.3–23.2°
c = 13.310 (4) ŵ = 0.08 mm1
β = 95.462 (5)°T = 298 K
V = 1433.7 (8) Å3Block, pale yellow
Z = 40.33 × 0.28 × 0.21 mm

Data collection

Bruker SMART CCD area-detector diffractometer2518 independent reflections
Radiation source: fine-focus sealed tube1416 reflections with I > 2σ(I)
graphiteRint = 0.048
[var phi] and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 1998)h = −15→15
Tmin = 0.975, Tmax = 0.984k = −9→10
7218 measured reflectionsl = −15→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.179H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + 0.3048P] where P = (Fo2 + 2Fc2)/3
2518 reflections(Δ/σ)max < 0.001
185 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = −0.20 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N11.11488 (18)0.2369 (3)0.00759 (19)0.0510 (7)
N21.16426 (18)0.1239 (3)−0.04672 (19)0.0513 (7)
N30.50653 (19)0.2577 (3)−0.08920 (17)0.0469 (6)
N40.56253 (19)0.1517 (3)−0.14224 (17)0.0470 (6)
C11.0250 (2)0.2044 (3)0.04438 (19)0.0394 (7)
C20.97626 (18)0.0553 (3)0.02796 (18)0.0350 (7)
C31.1205 (2)−0.0146 (3)−0.06568 (19)0.0408 (7)
C41.1709 (2)−0.1336 (3)−0.1275 (2)0.0522 (8)
H4A1.2463−0.1185−0.11870.063*
H4B1.1479−0.1161−0.19820.063*
C50.9742 (2)0.3236 (4)0.1053 (2)0.0483 (8)
H5A0.99060.42870.08190.058*
H5B1.00300.31460.17520.058*
C60.8543 (2)0.3047 (3)0.0998 (2)0.0456 (7)
C70.8054 (2)0.3422 (4)−0.0065 (2)0.0602 (9)
H7A0.83240.2704−0.05360.090*
H7B0.82240.4490−0.02370.090*
H7C0.73070.3308−0.00910.090*
C80.8112 (3)0.4183 (4)0.1746 (3)0.0705 (10)
H8A0.73640.40780.17110.106*
H8B0.82900.52510.15820.106*
H8C0.84110.39350.24160.106*
C90.4617 (2)0.2110 (3)−0.00971 (19)0.0380 (7)
C100.47112 (19)0.0524 (3)0.02548 (18)0.0361 (7)
C110.5739 (2)0.0028 (3)−0.11235 (19)0.0386 (7)
C120.6346 (2)−0.1106 (3)−0.1700 (2)0.0460 (8)
H12A0.7083−0.1023−0.14630.055*
H12B0.6267−0.0816−0.24080.055*
C130.3987 (2)0.3244 (3)0.0462 (2)0.0443 (7)
H13A0.32670.32350.01620.053*
H13B0.42610.43060.03940.053*
C140.4010 (2)0.2827 (3)0.1591 (2)0.0448 (8)
C150.5115 (3)0.3042 (4)0.2106 (2)0.0646 (10)
H15A0.53260.41270.20470.097*
H15B0.55900.23680.17900.097*
H15C0.51240.27670.28070.097*
C160.3261 (3)0.3920 (4)0.2079 (2)0.0652 (10)
H16A0.32670.36630.27820.098*
H16B0.25660.37880.17540.098*
H16C0.34800.50000.20100.098*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0418 (15)0.0440 (15)0.0675 (17)−0.0085 (12)0.0070 (13)−0.0044 (13)
N20.0442 (14)0.0409 (15)0.0702 (17)−0.0060 (12)0.0122 (12)−0.0011 (13)
N30.0583 (16)0.0392 (14)0.0445 (14)−0.0001 (12)0.0117 (12)0.0062 (11)
N40.0593 (16)0.0392 (15)0.0442 (14)−0.0027 (12)0.0133 (12)0.0036 (11)
C10.0385 (16)0.0370 (17)0.0416 (16)−0.0029 (13)−0.0025 (13)0.0016 (13)
C20.0322 (15)0.0314 (15)0.0402 (16)−0.0019 (11)−0.0026 (12)0.0033 (11)
C30.0413 (16)0.0387 (17)0.0424 (16)−0.0017 (14)0.0045 (13)0.0057 (13)
C40.0490 (18)0.050 (2)0.0595 (19)0.0021 (15)0.0164 (15)0.0029 (15)
C50.0491 (18)0.0458 (18)0.0488 (17)−0.0039 (15)−0.0014 (14)−0.0070 (14)
C60.0457 (17)0.0406 (17)0.0507 (17)0.0024 (14)0.0067 (14)−0.0028 (14)
C70.055 (2)0.052 (2)0.071 (2)0.0062 (16)−0.0062 (16)0.0042 (17)
C80.068 (2)0.061 (2)0.084 (3)0.0038 (19)0.0189 (19)−0.0165 (19)
C90.0411 (16)0.0354 (17)0.0370 (15)−0.0034 (13)0.0004 (12)0.0020 (13)
C100.0367 (15)0.0380 (17)0.0331 (15)−0.0046 (12)0.0008 (11)0.0016 (11)
C110.0412 (16)0.0380 (17)0.0366 (15)−0.0045 (13)0.0033 (12)0.0039 (13)
C120.0470 (17)0.0492 (19)0.0429 (16)0.0018 (14)0.0091 (13)0.0031 (14)
C130.0459 (17)0.0349 (16)0.0518 (17)−0.0025 (13)0.0030 (13)0.0026 (14)
C140.0489 (18)0.0416 (18)0.0438 (16)0.0031 (14)0.0053 (14)−0.0027 (13)
C150.064 (2)0.061 (2)0.065 (2)−0.0014 (18)−0.0099 (17)−0.0108 (18)
C160.081 (2)0.060 (2)0.057 (2)0.0161 (19)0.0187 (18)−0.0003 (17)

Geometric parameters (Å, °)

N1—C11.322 (3)C8—H8A0.9600
N1—N21.386 (3)C8—H8B0.9600
N2—C31.311 (3)C8—H8C0.9600
N3—C91.312 (3)C9—C101.420 (4)
N3—N41.382 (3)C9—C131.495 (4)
N4—C111.323 (4)C10—C10ii1.373 (5)
C1—C21.413 (3)C10—C11ii1.419 (3)
C1—C51.482 (4)C11—C10ii1.419 (3)
C2—C2i1.371 (5)C11—C121.491 (4)
C2—C3i1.423 (3)C12—C14ii1.534 (4)
C3—C2i1.423 (3)C12—H12A0.9700
C3—C41.485 (4)C12—H12B0.9700
C4—C6i1.533 (4)C13—C141.541 (4)
C4—H4A0.9700C13—H13A0.9700
C4—H4B0.9700C13—H13B0.9700
C5—C61.540 (4)C14—C161.521 (4)
C5—H5A0.9700C14—C151.525 (4)
C5—H5B0.9700C14—C12ii1.534 (4)
C6—C81.524 (4)C15—H15A0.9600
C6—C71.525 (4)C15—H15B0.9600
C6—C4i1.533 (4)C15—H15C0.9600
C7—H7A0.9600C16—H16A0.9600
C7—H7B0.9600C16—H16B0.9600
C7—H7C0.9600C16—H16C0.9600
C1—N1—N2120.5 (2)H8A—C8—H8C109.5
C3—N2—N1120.4 (2)H8B—C8—H8C109.5
C9—N3—N4120.4 (2)N3—C9—C10121.3 (2)
C11—N4—N3120.6 (2)N3—C9—C13120.5 (2)
N1—C1—C2121.0 (2)C10—C9—C13118.2 (2)
N1—C1—C5120.4 (2)C10ii—C10—C11ii118.1 (3)
C2—C1—C5118.6 (2)C10ii—C10—C9118.5 (3)
C2i—C2—C1118.5 (3)C11ii—C10—C9123.4 (2)
C2i—C2—C3i118.3 (3)N4—C11—C10ii121.0 (2)
C1—C2—C3i123.2 (2)N4—C11—C12120.2 (2)
N2—C3—C2i121.2 (2)C10ii—C11—C12118.8 (2)
N2—C3—C4120.5 (2)C11—C12—C14ii112.6 (2)
C2i—C3—C4118.2 (2)C11—C12—H12A109.1
C3—C4—C6i113.0 (2)C14ii—C12—H12A109.1
C3—C4—H4A109.0C11—C12—H12B109.1
C6i—C4—H4A109.0C14ii—C12—H12B109.1
C3—C4—H4B109.0H12A—C12—H12B107.8
C6i—C4—H4B109.0C9—C13—C14112.2 (2)
H4A—C4—H4B107.8C9—C13—H13A109.2
C1—C5—C6113.1 (2)C14—C13—H13A109.2
C1—C5—H5A109.0C9—C13—H13B109.2
C6—C5—H5A109.0C14—C13—H13B109.2
C1—C5—H5B109.0H13A—C13—H13B107.9
C6—C5—H5B109.0C16—C14—C15109.4 (3)
H5A—C5—H5B107.8C16—C14—C12ii109.2 (2)
C8—C6—C7109.5 (3)C15—C14—C12ii110.0 (2)
C8—C6—C4i109.7 (2)C16—C14—C13108.9 (2)
C7—C6—C4i110.0 (2)C15—C14—C13110.0 (2)
C8—C6—C5109.0 (2)C12ii—C14—C13109.3 (2)
C7—C6—C5110.1 (2)C14—C15—H15A109.5
C4i—C6—C5108.6 (2)C14—C15—H15B109.5
C6—C7—H7A109.5H15A—C15—H15B109.5
C6—C7—H7B109.5C14—C15—H15C109.5
H7A—C7—H7B109.5H15A—C15—H15C109.5
C6—C7—H7C109.5H15B—C15—H15C109.5
H7A—C7—H7C109.5C14—C16—H16A109.5
H7B—C7—H7C109.5C14—C16—H16B109.5
C6—C8—H8A109.5H16A—C16—H16B109.5
C6—C8—H8B109.5C14—C16—H16C109.5
H8A—C8—H8B109.5H16A—C16—H16C109.5
C6—C8—H8C109.5H16B—C16—H16C109.5

Symmetry codes: (i) −x+2, −y, −z; (ii) −x+1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2606).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bruker (1998). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Coghlan, M. J., Driekorn, B. A., Suhr, R. G. & Jourdan, G. P. (1989). European Patent No. 326328.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Inoue, S., Yasaki, A., Mochizuki, H., Tutsumi, H., Murata, M. & Sakane, K. (1993). Japanese Patent No. 05 213 951.
  • Ischikawa, H., Umeda, T. & Kajikawa, K. (1992). Japanese Patent No. 04 187 677.
  • Labovitz, J., Guilford, W., Liang, Y., Fang, L. & Patterson, T. (1990). European Patent No. 363 236.
  • Miyamoto, K., Matsumoto, J. & Nakamura, S. (1990). Japanese Patent No. 02 096 570.
  • Mizutani, M., Shiroshita, M., Okuda, H., Mito, N. & Sakaki, M. (1989). European Patent No. 320 782.
  • Mizutani, M., Shiroshita, M., Sakaki, M., Mito, N. & Okuda, H. (1989). European Patent No. 320 793.
  • Munro, D. & Bit, R. (1987). UK Patent No. 2 189 238.
  • Patterson, T. G. (1992). US Patent No. 5 129 940.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tutsumi, H., Terasawa, T., Barret, D., Mutata, M., Sakane, K., Yazaki, A. & Inoue, S. (1992). Japanese Patent No. 9 215 584.
  • Yokomoto, M., Yazaki, A., Hayashi, N., Hatono, S., Inoue, S. & Kuramoto, Y. (1992). European Patent No. 4 700 578.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography