PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 February 1; 65(Pt 2): m160–m161.
Published online 2009 January 8. doi:  10.1107/S1600536809000105
PMCID: PMC2968131

Chlorido[N′-(2-oxidobenzil­idene)acetohydrazide-κ2 O,N′,O′]copper(II) dihydrate

Abstract

In the title complex, [Cu(C9H9N2O2)Cl]·2H2O, prepared from the Schiff base ligand N′-(2-hydroxy­benzil­idene)aceto­hydrazide and copper(II) chloride, the CuII atom is coord­inated by two O atoms and one N atom from the ligand and by a Cl atom in a distorted square-planar geometry. The two donor O atoms of the tridentate Schiff base ligand are in a trans arrangement. In the crystal structure, there is an extensive inter­molecular hydrogen-bonding network; N—H(...)O, O—H(...)O and O—H(...)Cl inter­actions, involving the uncoordinated water mol­ecules, lead to the formation of a two-dimensional network parallel to the ab plane.

Related literature

For related structures, see: Ainscough et al. (1998 [triangle]); Chan et al. (1995 [triangle]); Koh et al. (1998 [triangle]). For similar square-planar copper(II) complexes, see: Li et al. (2008 [triangle]); Qiu & Wu (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m160-scheme1.jpg

Experimental

Crystal data

  • [Cu(C9H9N2O2)Cl]·2H2O
  • M r = 312.20
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m160-efi1.jpg
  • a = 6.762 (2) Å
  • b = 8.987 (2) Å
  • c = 10.312 (3) Å
  • α = 76.940 (11)°
  • β = 84.645 (12)°
  • γ = 81.903 (13)°
  • V = 603.1 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 2.04 mm−1
  • T = 173 (2) K
  • 0.16 × 0.12 × 0.10 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: none
  • 5193 measured reflections
  • 3520 independent reflections
  • 3036 reflections with I > 2σ(I)
  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032
  • wR(F 2) = 0.075
  • S = 1.06
  • 3520 reflections
  • 174 parameters
  • 4 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.50 e Å−3
  • Δρmin = −0.58 e Å−3

Data collection: COLLECT (Nonius, 1998 [triangle]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809000105/su2089sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809000105/su2089Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Agence Universitaire de la Francophonie for financial support (AUF-PSCI No. 6314PS804).

supplementary crystallographic information

Comment

The title complex, (I), was prepared by the reaction of the Schiff base ligand N'-(2-hydroxybenzilidene)acetohydrazide with copper(II) chloride. The molecular structure of (I) is illustrated in Fig. 1, and selected bond distances and angles are given in Table 1. Atom Cu1 is coordinated to two O-atoms and one N-atom from the Schiff base ligand and to one chloride atom. The Cu1-N and Cu1-O bond distances are similar to those observed in other CuII complexes of the same and similar tridentate ligands (Ainscough et al., 1998; Chan et al., 1995; Koh et al., 1998). The Cu1-Cl distance (2.2203 (5) Å) is similar to that observed in other copper(II) square-planar complexes (Li et al., 2008; Qiu & Wu, 2004). The two O donor atoms are in a trans arrangement with a O-Cu1-O angle of 170.21 (6)°. The angles around atom Cu1 are in the range of 81.39 (6) - 173.31 (5)°. The sum of the angles around atom Cu1 is 360.46°, suggesting that the geometry around the copper atom is distorted square-planar.

In the crystal structure of (I) there is an extensive intermolecular hydrogen bonding network (Fig. 2). N—H···O, O—H···O and O—H···Cl interactions (Table 2), involving the lattice water molecules, lead to the formation of a two-dimensional network parallel to the ab plane.

Experimental

To 0.356 g (2.0 mmol) of N'-(2-hydroxybenzilidene)acetohydrazide in 20 ml of ethanol was added a solution of copper chloride dihydrate (0.341 g, 2 mmol) in 10 ml of ethanol. The resulting mixture was refluxed for 1 h. After cooling the resulting solution was filtered, and the filtrate left for slow evaporation. Small green crystals of compound (I), suitable for X-ray analysis, was obtained in good yield (0.600 g; 96.0 %). IR (cm-1,KBr): 3490, 1675, 1640, 1620, 1580, 11570, 1465. UV (nm): 720, 600, 400. µeff = 1.80 µB. Conductance: Λ=13 S cm2 mol-1. Analysis calculated for C9H13ClCuN2O4: C 34.62, H 4.20, N 8.97 %; found: C 34.60, H 4.18, N 8.65 %.

Refinement

The NH hydrogen atom was located in a difference Fourier map and freely refined: 0.81 (3) Å. The water H-atoms were located in difference Fourier maps and refined isotropically with the O-H distances retrainted to 0.88 (2) Å. The remainder of the H-atoms were placed in calculated positions and treated as riding atoms: C-H = 0.95 - 0.98 Å with Uiso(H) = 1.2 or 1.5Ueq(parent C-atom).

Figures

Fig. 1.
A view of the molecular structure of compound (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
A view along the a axis of the crystal packing of compound (I), showing the N—H···O, O—H···O and O—H···Cl hydrogen bonds as dashed lines (see Table 2 for details). ...

Crystal data

[Cu(C9H9N2O2)Cl]·2H2OZ = 2
Mr = 312.20F(000) = 318
Triclinic, P1Dx = 1.719 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.762 (2) ÅCell parameters from 2138 reflections
b = 8.987 (2) Åθ = 1.0–30.0°
c = 10.312 (3) ŵ = 2.04 mm1
α = 76.940 (11)°T = 173 K
β = 84.645 (12)°Prism, green
γ = 81.903 (13)°0.16 × 0.12 × 0.10 mm
V = 603.1 (3) Å3

Data collection

Nonius KappaCCD diffractometer3036 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.021
graphiteθmax = 30.0°, θmin = 2.8°
π[Please check] scansh = −9→8
5193 measured reflectionsk = −12→12
3520 independent reflectionsl = −13→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H atoms treated by a mixture of independent and constrained refinement
S = 1.06w = 1/[s2(Fo2) + (0.0139P)2 + 0.4006P] where P = (Fo2 + 2Fc2)/3
3520 reflections(Δ/σ)max = 0.036
174 parametersΔρmax = 0.50 e Å3
4 restraintsΔρmin = −0.58 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.70935 (3)0.12114 (2)0.20663 (2)0.01876 (7)
Cl10.59285 (8)0.32377 (5)0.29307 (5)0.02773 (12)
O10.6694 (2)0.22971 (14)0.02897 (14)0.0247 (3)
O20.7955 (2)−0.00478 (15)0.37823 (14)0.0238 (3)
O30.9689 (3)−0.47969 (18)0.23882 (18)0.0330 (4)
O40.2576 (3)0.44891 (19)0.04512 (18)0.0342 (4)
N10.8652 (2)−0.18532 (18)0.25675 (17)0.0200 (3)
H10.899 (4)−0.273 (3)0.249 (3)0.032 (7)*
N20.7995 (2)−0.07024 (16)0.15054 (15)0.0169 (3)
C10.6714 (3)0.1693 (2)−0.07799 (19)0.0195 (4)
C20.6135 (3)0.2688 (2)−0.1980 (2)0.0229 (4)
H20.57410.3749−0.19950.050*
C30.6125 (3)0.2164 (2)−0.3137 (2)0.0251 (4)
H30.57350.2867−0.39340.050*
C40.6682 (3)0.0608 (2)−0.3152 (2)0.0263 (4)
H40.66680.0249−0.39490.050*
C50.7249 (3)−0.0390 (2)−0.1993 (2)0.0231 (4)
H50.7630−0.1448−0.19980.050*
C60.7283 (3)0.0114 (2)−0.07873 (19)0.0189 (4)
C70.7920 (3)−0.1029 (2)0.03622 (19)0.0193 (4)
H70.8299−0.20620.02730.050*
C80.8581 (3)−0.1417 (2)0.37220 (19)0.0210 (4)
C90.9213 (3)−0.2590 (2)0.4927 (2)0.0286 (4)
H9A0.9653−0.35810.46790.050*
H9B0.8083−0.26980.55950.050*
H9C1.0320−0.22620.52980.050*
HW11.054 (4)−0.504 (3)0.180 (2)0.050 (9)*
HW20.873 (4)−0.529 (4)0.240 (4)0.089 (13)*
HW30.286 (5)0.539 (2)0.014 (3)0.067 (10)*
HW40.367 (4)0.398 (4)0.067 (4)0.076 (11)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.02308 (13)0.01631 (12)0.01686 (13)−0.00064 (8)−0.00474 (9)−0.00321 (8)
Cl10.0375 (3)0.0199 (2)0.0257 (3)0.00195 (19)−0.0029 (2)−0.00765 (18)
O10.0400 (8)0.0171 (6)0.0174 (7)−0.0032 (6)−0.0073 (6)−0.0024 (5)
O20.0316 (8)0.0215 (6)0.0178 (7)0.0027 (5)−0.0065 (6)−0.0049 (5)
O30.0398 (10)0.0234 (7)0.0359 (10)−0.0038 (7)−0.0016 (8)−0.0069 (7)
O40.0302 (9)0.0296 (8)0.0425 (10)−0.0032 (7)−0.0075 (7)−0.0052 (7)
N10.0234 (8)0.0161 (7)0.0192 (8)−0.0002 (6)−0.0047 (6)−0.0013 (6)
N20.0173 (7)0.0153 (7)0.0173 (8)−0.0008 (5)−0.0048 (6)−0.0008 (6)
C10.0191 (9)0.0223 (9)0.0176 (9)−0.0052 (7)−0.0017 (7)−0.0034 (7)
C20.0249 (10)0.0219 (9)0.0208 (10)−0.0048 (7)−0.0042 (8)−0.0002 (7)
C30.0233 (10)0.0341 (10)0.0167 (9)−0.0066 (8)−0.0031 (8)−0.0003 (8)
C40.0268 (10)0.0367 (11)0.0179 (10)−0.0075 (8)−0.0012 (8)−0.0088 (8)
C50.0223 (9)0.0263 (9)0.0223 (10)−0.0042 (7)−0.0001 (8)−0.0087 (8)
C60.0188 (8)0.0220 (9)0.0169 (9)−0.0050 (7)−0.0023 (7)−0.0042 (7)
C70.0190 (9)0.0190 (8)0.0204 (9)−0.0028 (7)−0.0018 (7)−0.0049 (7)
C80.0197 (9)0.0242 (9)0.0178 (9)−0.0011 (7)−0.0030 (7)−0.0022 (7)
C90.0357 (11)0.0271 (10)0.0198 (10)0.0008 (8)−0.0066 (9)0.0009 (8)

Geometric parameters (Å, °)

Cu1—O11.8951 (13)C1—C61.419 (3)
Cu1—N21.9373 (15)C2—C31.380 (3)
Cu1—O21.9628 (13)C2—H20.9500
Cu1—Cl12.2203 (5)C3—C41.399 (3)
O1—C11.333 (2)C3—H30.9500
O2—C81.257 (2)C4—C51.373 (3)
O3—HW10.837 (17)C4—H40.9500
O3—HW20.837 (18)C5—C61.420 (3)
O4—HW30.840 (18)C5—H50.9500
O4—HW40.835 (18)C6—C71.438 (2)
N1—C81.330 (2)C7—H70.9500
N1—N21.384 (2)C8—C91.489 (3)
N1—H10.81 (3)C9—H9A0.9800
N2—C71.285 (2)C9—H9B0.9800
C1—C21.406 (3)C9—H9C0.9800
O1—Cu1—N292.17 (6)C2—C3—H3119.6
O1—Cu1—O2170.21 (6)C4—C3—H3119.6
N2—Cu1—O281.39 (6)C5—C4—C3118.78 (18)
O1—Cu1—Cl193.63 (4)C5—C4—H4120.6
N2—Cu1—Cl1173.31 (5)C3—C4—H4120.6
O2—Cu1—Cl193.27 (4)C4—C5—C6121.80 (18)
C1—O1—Cu1126.91 (11)C4—C5—H5119.1
C8—O2—Cu1112.67 (12)C6—C5—H5119.1
HW1—O3—HW2107 (3)C1—C6—C5119.09 (17)
HW3—O4—HW4104 (3)C1—C6—C7123.89 (17)
C8—N1—N2114.80 (15)C5—C6—C7117.02 (17)
C8—N1—H1123.0 (18)N2—C7—C6122.26 (16)
N2—N1—H1122.1 (18)N2—C7—H7118.9
C7—N2—N1119.37 (15)C6—C7—H7118.9
C7—N2—Cu1129.28 (12)O2—C8—N1119.94 (16)
N1—N2—Cu1111.15 (12)O2—C8—C9121.56 (18)
O1—C1—C2117.80 (17)N1—C8—C9118.49 (17)
O1—C1—C6124.33 (16)C8—C9—H9A109.5
C2—C1—C6117.88 (17)C8—C9—H9B109.5
C3—C2—C1121.67 (18)H9A—C9—H9B109.5
C3—C2—H2119.2C8—C9—H9C109.5
C1—C2—H2119.2H9A—C9—H9C109.5
C2—C3—C4120.79 (18)H9B—C9—H9C109.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O30.81 (3)1.88 (3)2.683 (2)177 (3)
O3—HW1···O4i0.84 (2)1.94 (2)2.777 (3)177 (3)
O3—HW2···Cl1ii0.84 (2)2.41 (2)3.2333 (18)168 (4)
O4—HW3···O1iii0.84 (2)2.09 (2)2.916 (2)169 (3)
O4—HW4···O10.84 (2)2.43 (2)3.191 (2)153 (3)
O4—HW4···Cl10.84 (2)2.80 (3)3.4648 (17)137 (3)

Symmetry codes: (i) x+1, y−1, z; (ii) x, y−1, z; (iii) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2089).

References

  • Ainscough, E. W., Brodie, A. M., Dobbs, A. J., Ranford, J. D. & Waters, J. M. (1998). Inorg. Chim. Acta, 267, 27–38.
  • Chan, S. C., Koh, L. L., Leung, P.-H., Ranford, J. D. & Sim, K. Y. (1995). Inorg. Chim. Acta, 236, 101–108.
  • Koh, L. L., Kon, O. L., Loh, K. W., Long, Y. C., Ranford, J. D., Tan, A. L. C. & Tjan, Y. Y. (1998). J. Inorg. Biochem.72, 155–162. [PubMed]
  • Li, R., Zhao, P., Tang, G. & Tao, Y. (2008). Acta Cryst. E64, m559. [PMC free article] [PubMed]
  • Nonius (1998). COLLECT Nonius B. V., Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Qiu, X.-H. & Wu, H.-Y. (2004). Acta Cryst. E60, m1855–m1856.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography