PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 February 1; 65(Pt 2): o307.
Published online 2009 January 14. doi:  10.1107/S1600536809000804
PMCID: PMC2968126

N,N′-Bis(3-phenyl­allyl­idene)biphenyl-2,2′-diamine

Abstract

In the title Schiff base, C30H24N2, the complete molecule is generated by a crystallographic twofold axis; the aromatic rings of the biphenyl unit are twisted by 60.78 (1)°. The imine double bond has a trans configuration.

Related literature

For a list of the crystal structures of Schiff bases formed by condensing biphenyl-2,2′-diamine with aldehydes or ketones, see: Dehghanpour et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o307-scheme1.jpg

Experimental

Crystal data

  • C30H24N2
  • M r = 412.51
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o307-efi1.jpg
  • a = 15.4354 (12) Å
  • b = 31.783 (2) Å
  • c = 9.6188 (8) Å
  • V = 4718.8 (6) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.07 mm−1
  • T = 295 (2) K
  • 0.27 × 0.21 × 0.16 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.982, T max = 0.989
  • 11331 measured reflections
  • 1427 independent reflections
  • 1021 reflections with I > 2σ(I)
  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.110
  • S = 1.07
  • 1427 reflections
  • 145 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.11 e Å−3
  • Δρmin = −0.15 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998 [triangle]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2009 [triangle]).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809000804/bt2848sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809000804/bt2848Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Alzahra University Research Council and Natural Resources, and the University of Malaya for supporting this study.

supplementary crystallographic information

Experimental

Biphenyl-2,2'-diamine (5 mmol) and cinnamaldehyde (10 mmol) were dissolved in diethyl ether (50 ml). The mixture was stirred for 30 min. Evaporation of the solvent gave a solid that was recrystallized from ethanol twice. Yield: 80%. CH&N elemental analysis. Calculated for C30H24N2: C 87.35, H 5.86, N 6.79%; found: C 87.30, H 5.81, N 9.82%.

Refinement

H atoms were placed in calculated positions [C—H 0.93 Å and Uiso(H) 1.2Ueq(C)], and were included in the refinement in the riding-model approximation. Friedel pairs were merged

Figures

Fig. 1.
Anisotropic displacement ellipsoid plot (Barbour, 2001); displacement ellipsoids are drawn at the 50% probability level, and H atoms as spheres of arbitrary radius. (Symmetry code i: -x, -y, z).

Crystal data

C30H24N2F(000) = 1744
Mr = 412.51Dx = 1.161 Mg m3
Orthorhombic, Fdd2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F 2 -2dCell parameters from 7049 reflections
a = 15.4354 (12) Åθ = 3.2–27.5°
b = 31.783 (2) ŵ = 0.07 mm1
c = 9.6188 (8) ÅT = 295 K
V = 4718.8 (6) Å3Cuboid, light yellow
Z = 80.27 × 0.21 × 0.16 mm

Data collection

Rigaku R-AXIS RAPID diffractometer1427 independent reflections
Radiation source: fine-focus sealed tube1021 reflections with I > 2σ(I)
graphiteRint = 0.029
Detector resolution: 10.000 pixels mm-1θmax = 27.5°, θmin = 3.2°
ω scansh = −20→19
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)k = −41→41
Tmin = 0.982, Tmax = 0.989l = −12→12
11331 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.07w = 1/[σ2(Fo2) + (0.0608P)2 + 0.8672P] where P = (Fo2 + 2Fc2)/3
1427 reflections(Δ/σ)max = 0.001
145 parametersΔρmax = 0.11 e Å3
1 restraintΔρmin = −0.15 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C1−0.01193 (13)0.05064 (6)0.5676 (2)0.0523 (5)
C2−0.02328 (13)0.02045 (6)0.4634 (2)0.0541 (5)
C3−0.07746 (15)0.02974 (7)0.3523 (3)0.0641 (6)
H3A−0.08590.00970.28310.077*
C4−0.11943 (16)0.06833 (8)0.3424 (3)0.0724 (7)
H4A−0.15610.07390.26790.087*
C5−0.10622 (16)0.09796 (7)0.4433 (3)0.0695 (7)
H5A−0.13330.12400.43630.083*
C6−0.05334 (14)0.08962 (6)0.5546 (3)0.0609 (6)
H6A−0.04490.11010.62230.073*
C70.03355 (16)0.05664 (7)0.7976 (3)0.0598 (6)
H7A−0.01850.07020.81650.072*
C80.09664 (17)0.05217 (7)0.9066 (3)0.0629 (6)
H8A0.14670.03700.88700.075*
C90.08822 (15)0.06818 (7)1.0333 (3)0.0637 (6)
H9A0.03740.08291.05160.076*
C100.15066 (15)0.06500 (7)1.1471 (3)0.0588 (6)
C110.22801 (16)0.04272 (7)1.1346 (3)0.0669 (6)
H11A0.24170.03011.05020.080*
C120.28461 (18)0.03901 (9)1.2443 (3)0.0771 (8)
H12A0.33610.02411.23370.093*
C130.2651 (2)0.05718 (9)1.3688 (3)0.0822 (8)
H13A0.30330.05471.44310.099*
C140.18916 (19)0.07916 (10)1.3845 (3)0.0829 (8)
H14A0.17580.09131.46970.099*
C150.13291 (17)0.08318 (8)1.2745 (3)0.0703 (7)
H15A0.08200.09841.28600.084*
N10.04738 (12)0.04246 (5)0.6758 (2)0.0584 (5)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0562 (11)0.0430 (9)0.0576 (14)0.0011 (8)0.0025 (11)0.0017 (9)
C20.0626 (11)0.0412 (10)0.0584 (14)0.0000 (9)0.0012 (11)0.0017 (9)
C30.0792 (15)0.0510 (11)0.0622 (15)0.0019 (11)−0.0095 (13)−0.0006 (11)
C40.0809 (15)0.0638 (13)0.0725 (16)0.0109 (12)−0.0124 (14)0.0089 (12)
C50.0807 (15)0.0509 (11)0.0770 (18)0.0140 (11)0.0009 (15)0.0072 (12)
C60.0714 (13)0.0432 (9)0.0681 (15)0.0043 (9)0.0024 (13)−0.0018 (10)
C70.0649 (13)0.0496 (11)0.0648 (16)−0.0036 (10)−0.0008 (13)0.0007 (11)
C80.0707 (14)0.0538 (11)0.0641 (16)0.0005 (10)−0.0006 (12)−0.0019 (12)
C90.0645 (13)0.0638 (13)0.0627 (16)0.0013 (11)0.0043 (13)−0.0040 (12)
C100.0632 (13)0.0539 (11)0.0593 (14)−0.0054 (10)0.0053 (12)−0.0010 (10)
C110.0663 (14)0.0743 (14)0.0600 (16)0.0005 (11)0.0086 (12)0.0008 (12)
C120.0688 (15)0.0864 (18)0.076 (2)0.0019 (13)0.0035 (14)0.0137 (15)
C130.0814 (17)0.0908 (19)0.074 (2)−0.0112 (15)−0.0109 (17)0.0062 (16)
C140.100 (2)0.0861 (17)0.0621 (18)−0.0064 (16)−0.0005 (17)−0.0145 (15)
C150.0763 (15)0.0673 (13)0.0673 (17)0.0006 (12)0.0044 (14)−0.0112 (13)
N10.0707 (11)0.0445 (8)0.0599 (13)0.0019 (8)−0.0044 (10)−0.0029 (9)

Geometric parameters (Å, °)

C1—C21.399 (3)C8—C91.327 (4)
C1—C61.400 (3)C8—H8A0.9300
C1—N11.410 (3)C9—C101.461 (3)
C2—C31.389 (3)C9—H9A0.9300
C2—C2i1.485 (4)C10—C151.383 (4)
C3—C41.390 (3)C10—C111.393 (3)
C3—H3A0.9300C11—C121.375 (4)
C4—C51.368 (4)C11—H11A0.9300
C4—H4A0.9300C12—C131.362 (4)
C5—C61.373 (4)C12—H12A0.9300
C5—H5A0.9300C13—C141.373 (4)
C6—H6A0.9300C13—H13A0.9300
C7—N11.273 (3)C14—C151.375 (4)
C7—C81.438 (4)C14—H14A0.9300
C7—H7A0.9300C15—H15A0.9300
C2—C1—C6119.1 (2)C7—C8—H8A117.8
C2—C1—N1118.93 (17)C8—C9—C10126.6 (2)
C6—C1—N1121.7 (2)C8—C9—H9A116.7
C3—C2—C1118.76 (18)C10—C9—H9A116.7
C3—C2—C2i118.52 (15)C15—C10—C11117.3 (2)
C1—C2—C2i122.67 (16)C15—C10—C9120.3 (2)
C2—C3—C4121.4 (2)C11—C10—C9122.4 (2)
C2—C3—H3A119.3C12—C11—C10121.5 (3)
C4—C3—H3A119.3C12—C11—H11A119.3
C5—C4—C3119.3 (3)C10—C11—H11A119.3
C5—C4—H4A120.4C13—C12—C11119.8 (3)
C3—C4—H4A120.4C13—C12—H12A120.1
C4—C5—C6120.6 (2)C11—C12—H12A120.1
C4—C5—H5A119.7C12—C13—C14120.1 (3)
C6—C5—H5A119.7C12—C13—H13A120.0
C5—C6—C1120.8 (2)C14—C13—H13A120.0
C5—C6—H6A119.6C13—C14—C15120.1 (3)
C1—C6—H6A119.6C13—C14—H14A119.9
N1—C7—C8121.5 (2)C15—C14—H14A119.9
N1—C7—H7A119.3C14—C15—C10121.2 (2)
C8—C7—H7A119.3C14—C15—H15A119.4
C9—C8—C7124.4 (2)C10—C15—H15A119.4
C9—C8—H8A117.8C7—N1—C1120.32 (19)
C6—C1—C2—C3−1.9 (3)C8—C9—C10—C15−179.7 (2)
N1—C1—C2—C3−175.9 (2)C8—C9—C10—C11−2.0 (4)
C6—C1—C2—C2i175.3 (2)C15—C10—C11—C12−0.2 (4)
N1—C1—C2—C2i1.4 (3)C9—C10—C11—C12−177.9 (2)
C1—C2—C3—C40.7 (3)C10—C11—C12—C130.4 (4)
C2i—C2—C3—C4−176.6 (2)C11—C12—C13—C140.0 (5)
C2—C3—C4—C50.8 (4)C12—C13—C14—C15−0.5 (5)
C3—C4—C5—C6−1.1 (4)C13—C14—C15—C100.7 (5)
C4—C5—C6—C1−0.1 (4)C11—C10—C15—C14−0.4 (4)
C2—C1—C6—C51.7 (3)C9—C10—C15—C14177.4 (2)
N1—C1—C6—C5175.4 (2)C8—C7—N1—C1−174.1 (2)
N1—C7—C8—C9176.2 (2)C2—C1—N1—C7−147.5 (2)
C7—C8—C9—C10−179.2 (2)C6—C1—N1—C738.7 (3)

Symmetry codes: (i) −x, −y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2848).

References

  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Dehghanpour, S., Asadizadeh, S., Gao, S. & Ng, S. W. (2009). Acta Cryst. E65, o306. [PMC free article] [PubMed]
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Rigaku (1998). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2002). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2009). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography