PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 February 1; 65(Pt 2): m181.
Published online 2009 January 14. doi:  10.1107/S1600536809000786
PMCID: PMC2968124

Diazido­bis[4,4,5,5-tetra­methyl-2-(1,3-thia­zol-2-yl)-2-imidazoline-1-oxyl-3-oxide-κ2 O,N]manganese(II)

Abstract

In the crystal structure of the title compound, [Mn(N3)2(C10H14N3O2S)2], the Mn(II) atom exhibits a roughly octa­hedral coordination geometry. The Mn(II) atom lies on an inversion centre, thus the asymmetric unit comprises one half-mol­ecule. The metal center is six-coordinated by two azide anions and by two chelating 4,4,5,5-tetra­methyl-2-(1,3-thia­zol-2-yl)-2-imidazoline-1-oxyl-3-oxide nitronyl nitroxide radical ligands, leading to two six-membered chelate rings.

Related literature

For the design and synthesis of mol­ecule-based magnetic materials, see: Aoki et al. (2003 [triangle]). For nitronyl nitroxide radicals, see: Minguet et al. (2000 [triangle]); Catala et al. (2005 [triangle]). For transition metal–radical complexes, see: Wang et al. (2005 [triangle]). For paramagnetic metal complexes of nitronyl nitroxide radicals, see: Li et al. (2002 [triangle]); Liu et al. (2001 [triangle]). For the synthesis, see: Ullman et al. (1970 [triangle], 1972 [triangle])

An external file that holds a picture, illustration, etc.
Object name is e-65-0m181-scheme1.jpg

Experimental

Crystal data

  • [Mn(N3)2(C10H14N3O2S)2]
  • M r = 619.60
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m181-efi1.jpg
  • a = 9.9600 (18) Å
  • b = 12.272 (2) Å
  • c = 11.353 (2) Å
  • β = 103.714 (3)°
  • V = 1348.1 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.70 mm−1
  • T = 291 (2) K
  • 0.45 × 0.30 × 0.25 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.745, T max = 0.846
  • 7966 measured reflections
  • 3061 independent reflections
  • 2628 reflections with I > 2σ(I)
  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.110
  • S = 1.06
  • 3061 reflections
  • 182 parameters
  • H-atom parameters constrained
  • Δρmax = 0.37 e Å−3
  • Δρmin = −0.25 e Å−3

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT (Bruker, 2002 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2009 [triangle]).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809000786/kp2202sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809000786/kp2202Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant No. 20471026) and the Natural Science Foundation of Henan Province (grant No. 0311021200).

supplementary crystallographic information

Comment

The design and synthesis of molecule-based magnetic materials is one of the major subjects of materials science(Aoki et al. 2003). In many different types of organic radicals, research has focused on the nitronyl nitroxide radicals (NITR) family because of their flexibility and functionality (Minguet et al. 2000; Catala et al. 2005). The nitroxide derivatives can be bound to the metal center through the oxygen atoms of O–N groups, affording a good variety of transition metal–radical complexes (Wang et al. 2005;). There have been many magnetic studies on transition metal complexes with nitronyl nitroxide and imino nitroxide radicals and paramagnetic metal complexes of nitronyl nitroxide radicals have been extensively studied (Li et al. 2002; Liu et al. 2001). In the present paper, we report the synthesis and crystal structure of the title compound Mn(N3)2(NIT2-thz)2.

Experimental

NIT2-thz [NIT2-thz = 4,4,5,5-tetramethyl-2-(1,3-thiazol-2-yl)-2-imidazoline-1-oxyl-3-oxide] was synthesized using a method in the literatrue (Ullman et al. 1970; Ullman et al. 1972). Mn (Ac)2. 4H2O(1 mmol) and NIT2-thz (2 mmol) were mixed in 30 ml of methanol. An aqueous solution (10 ml) of NaN3 (2 mmol) was added to this solution. The mixture was stirred for an 1 h and filtered off. The filtrate was kept at room temperatrue for 1 meek, and well formed dark brown crstals of Mn(N3)2(NIT2-thz)2 were obtained.

Refinement

The H atoms were positioned geometrically and refined using the riding-model approximation, with C—H = 0.93 or 0.96Å and Uiso(H) = 1.2Ueq(carrier) or Uiso(H) = 1.5Ueq(methyl carrier).

Figures

Fig. 1.
ORTEP drawing of the title compound with atom labeling. The thermal ellipsoids are drawn at 30% probability level.[symmetry codes: x,-y,-z + 1].

Crystal data

[Mn(N3)2(C10H14N3O2S)2]F(000) = 642
Mr = 619.60Dx = 1.526 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4318 reflections
a = 9.9600 (18) Åθ = 2.5–28.2°
b = 12.272 (2) ŵ = 0.70 mm1
c = 11.353 (2) ÅT = 291 K
β = 103.714 (3)°Block, dark brown
V = 1348.1 (4) Å30.45 × 0.30 × 0.25 mm
Z = 2

Data collection

Bruker SMART CCD area-detector diffractometer3061 independent reflections
Radiation source: fine-focus sealed tube2628 reflections with I > 2σ(I)
graphiteRint = 0.036
[var phi] and ω scansθmax = 27.5°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −12→12
Tmin = 0.745, Tmax = 0.846k = −15→15
7966 measured reflectionsl = −12→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.0605P)2 + 0.2559P] where P = (Fo2 + 2Fc2)/3
3061 reflections(Δ/σ)max < 0.001
182 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = −0.25 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)are estimated using the full covariance matrix. The cell e.s.d.'s are takeninto account individually in the estimation of e.s.d.'s in distances, anglesand torsion angles; correlations between e.s.d.'s in cell parameters are onlyused when they are defined by crystal symmetry. An approximate (isotropic)treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR andgoodness of fit S are based on F2, conventional R-factors R are basedon F, with F set to zero for negative F2. The threshold expression ofF2 > σ(F2) is used only for calculating R-factors(gt) etc. and isnot relevant to the choice of reflections for refinement. R-factors basedon F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Mn10.00000.00000.50000.03345 (14)
S10.25159 (5)0.27889 (4)0.36683 (5)0.05049 (17)
O10.17034 (15)−0.08711 (11)0.44955 (14)0.0504 (4)
O20.38630 (18)0.14599 (13)0.23568 (17)0.0660 (5)
N10.12384 (15)0.14413 (11)0.47278 (13)0.0337 (3)
N20.23912 (14)−0.05108 (11)0.37542 (13)0.0336 (3)
N30.34509 (15)0.05765 (13)0.27421 (14)0.0407 (4)
N4−0.1080 (2)0.00819 (18)0.31193 (18)0.0641 (6)
N5−0.08511 (17)0.04681 (12)0.22465 (15)0.0433 (4)
N6−0.0640 (3)0.08223 (18)0.13715 (19)0.0761 (7)
C10.1569 (2)0.32772 (15)0.4616 (2)0.0495 (5)
H10.14790.40120.47820.059*
C20.0969 (2)0.24624 (14)0.50955 (17)0.0412 (4)
H20.04130.25840.56350.049*
C30.20718 (16)0.14870 (12)0.39806 (15)0.0318 (3)
C40.25886 (16)0.05337 (13)0.34979 (15)0.0317 (3)
C50.40415 (19)−0.05207 (16)0.25646 (16)0.0406 (4)
C60.30045 (18)−0.12873 (14)0.29998 (16)0.0382 (4)
C70.4089 (3)−0.0651 (2)0.12397 (19)0.0628 (6)
H7A0.3179−0.05510.07320.094*
H7B0.4417−0.13670.11140.094*
H7C0.4702−0.01160.10390.094*
C80.5497 (2)−0.0545 (2)0.3366 (2)0.0601 (6)
H8A0.60290.00370.31370.090*
H8B0.5923−0.12300.32690.090*
H8C0.5461−0.04550.41970.090*
C90.1798 (2)−0.1673 (2)0.1994 (2)0.0595 (6)
H9A0.1102−0.19900.23460.089*
H9B0.2118−0.22080.15070.089*
H9C0.1413−0.10640.14960.089*
C100.3643 (3)−0.22455 (19)0.3780 (2)0.0620 (6)
H10A0.4243−0.19810.45150.093*
H10B0.4167−0.26800.33450.093*
H10C0.2925−0.26820.39740.093*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Mn10.0362 (2)0.0333 (2)0.0373 (2)−0.00148 (13)0.02166 (16)0.00206 (13)
S10.0483 (3)0.0342 (2)0.0743 (4)−0.00716 (19)0.0251 (3)0.0074 (2)
O10.0597 (9)0.0351 (6)0.0717 (10)0.0065 (6)0.0459 (8)0.0095 (6)
O20.0697 (10)0.0592 (9)0.0861 (12)−0.0037 (8)0.0525 (10)0.0169 (8)
N10.0365 (7)0.0299 (7)0.0381 (7)0.0019 (5)0.0156 (6)−0.0003 (5)
N20.0325 (7)0.0336 (7)0.0395 (8)0.0037 (5)0.0182 (6)0.0003 (6)
N30.0371 (8)0.0466 (8)0.0452 (8)0.0000 (6)0.0230 (7)0.0038 (7)
N40.0681 (13)0.0827 (14)0.0416 (10)−0.0251 (10)0.0134 (9)0.0060 (9)
N50.0497 (9)0.0360 (8)0.0453 (9)−0.0042 (6)0.0138 (7)0.0000 (7)
N60.121 (2)0.0587 (12)0.0582 (12)−0.0128 (12)0.0400 (13)0.0104 (10)
C10.0490 (11)0.0305 (8)0.0668 (13)0.0003 (8)0.0093 (10)−0.0061 (8)
C20.0449 (10)0.0352 (8)0.0444 (10)0.0065 (7)0.0122 (8)−0.0065 (7)
C30.0297 (8)0.0302 (7)0.0372 (8)−0.0012 (6)0.0113 (6)0.0028 (6)
C40.0277 (8)0.0361 (8)0.0335 (8)0.0006 (6)0.0118 (6)0.0029 (6)
C50.0346 (9)0.0556 (11)0.0361 (9)0.0076 (7)0.0170 (7)−0.0030 (8)
C60.0369 (9)0.0404 (9)0.0402 (9)0.0095 (7)0.0151 (7)−0.0048 (7)
C70.0640 (14)0.0898 (17)0.0422 (11)0.0087 (12)0.0277 (10)−0.0064 (11)
C80.0358 (10)0.0856 (16)0.0599 (13)0.0054 (10)0.0133 (10)−0.0127 (12)
C90.0569 (13)0.0618 (13)0.0587 (13)−0.0084 (10)0.0117 (11)−0.0173 (10)
C100.0695 (15)0.0542 (12)0.0703 (15)0.0292 (11)0.0324 (13)0.0111 (11)

Geometric parameters (Å, °)

Mn1—N4i2.153 (2)C2—H20.9300
Mn1—N42.153 (2)C3—C41.438 (2)
Mn1—O1i2.1931 (12)C5—C81.518 (3)
Mn1—O12.1931 (12)C5—C71.525 (3)
Mn1—N12.2194 (14)C5—C61.561 (3)
Mn1—N1i2.2194 (14)C6—C101.518 (3)
S1—C11.699 (2)C6—C91.524 (3)
S1—C31.7170 (16)C7—H7A0.9600
O1—N21.2832 (17)C7—H7B0.9600
O2—N31.273 (2)C7—H7C0.9600
N1—C31.321 (2)C8—H8A0.9600
N1—C21.367 (2)C8—H8B0.9600
N2—C41.339 (2)C8—H8C0.9600
N2—C61.504 (2)C9—H9A0.9600
N3—C41.3513 (19)C9—H9B0.9600
N3—C51.502 (2)C9—H9C0.9600
N4—N51.168 (2)C10—H10A0.9600
N5—N61.148 (2)C10—H10B0.9600
C1—C21.345 (3)C10—H10C0.9600
C1—H10.9300
N4i—Mn1—N4180.0N2—C4—C3127.70 (14)
N4i—Mn1—O1i89.95 (8)N3—C4—C3123.31 (15)
N4—Mn1—O1i90.05 (8)N3—C5—C8106.60 (17)
N4i—Mn1—O190.05 (8)N3—C5—C7109.34 (17)
N4—Mn1—O189.95 (8)C8—C5—C7109.88 (17)
O1i—Mn1—O1180.0N3—C5—C6100.84 (13)
N4i—Mn1—N190.68 (6)C8—C5—C6114.10 (17)
N4—Mn1—N189.32 (6)C7—C5—C6115.27 (18)
O1i—Mn1—N197.92 (5)N2—C6—C10109.20 (15)
O1—Mn1—N182.08 (5)N2—C6—C9105.59 (15)
N4i—Mn1—N1i89.32 (6)C10—C6—C9110.10 (19)
N4—Mn1—N1i90.68 (6)N2—C6—C5100.77 (13)
O1i—Mn1—N1i82.08 (5)C10—C6—C5115.73 (16)
O1—Mn1—N1i97.92 (5)C9—C6—C5114.43 (16)
N1—Mn1—N1i180.0C5—C7—H7A109.5
C1—S1—C389.35 (9)C5—C7—H7B109.5
N2—O1—Mn1124.73 (10)H7A—C7—H7B109.5
C3—N1—C2110.83 (14)C5—C7—H7C109.5
C3—N1—Mn1125.29 (11)H7A—C7—H7C109.5
C2—N1—Mn1122.15 (11)H7B—C7—H7C109.5
O1—N2—C4126.95 (13)C5—C8—H8A109.5
O1—N2—C6120.47 (13)C5—C8—H8B109.5
C4—N2—C6112.47 (13)H8A—C8—H8B109.5
O2—N3—C4123.82 (15)C5—C8—H8C109.5
O2—N3—C5123.29 (14)H8A—C8—H8C109.5
C4—N3—C5112.24 (14)H8B—C8—H8C109.5
N5—N4—Mn1135.07 (17)C6—C9—H9A109.5
N6—N5—N4178.1 (2)C6—C9—H9B109.5
C2—C1—S1111.16 (14)H9A—C9—H9B109.5
C2—C1—H1124.4C6—C9—H9C109.5
S1—C1—H1124.4H9A—C9—H9C109.5
C1—C2—N1114.81 (16)H9B—C9—H9C109.5
C1—C2—H2122.6C6—C10—H10A109.5
N1—C2—H2122.6C6—C10—H10B109.5
N1—C3—C4123.11 (14)H10A—C10—H10B109.5
N1—C3—S1113.83 (12)C6—C10—H10C109.5
C4—C3—S1123.04 (12)H10A—C10—H10C109.5
N2—C4—N3108.87 (14)H10B—C10—H10C109.5
N4i—Mn1—O1—N2−122.97 (15)O1—N2—C4—N3175.59 (17)
N4—Mn1—O1—N257.03 (15)C6—N2—C4—N3−8.19 (19)
O1i—Mn1—O1—N2105 (8)O1—N2—C4—C3−0.6 (3)
N1—Mn1—O1—N2−32.28 (14)C6—N2—C4—C3175.65 (17)
N1i—Mn1—O1—N2147.72 (14)O2—N3—C4—N2−178.27 (17)
N4i—Mn1—N1—C3118.52 (15)C5—N3—C4—N2−7.24 (19)
N4—Mn1—N1—C3−61.48 (15)O2—N3—C4—C3−1.9 (3)
O1i—Mn1—N1—C3−151.43 (14)C5—N3—C4—C3169.12 (16)
O1—Mn1—N1—C328.57 (14)N1—C3—C4—N2−3.7 (3)
N1i—Mn1—N1—C324.5 (17)S1—C3—C4—N2174.59 (14)
N4i—Mn1—N1—C2−77.84 (15)N1—C3—C4—N3−179.39 (16)
N4—Mn1—N1—C2102.16 (15)S1—C3—C4—N3−1.1 (2)
O1i—Mn1—N1—C212.20 (15)O2—N3—C5—C870.0 (2)
O1—Mn1—N1—C2−167.80 (15)C4—N3—C5—C8−101.13 (18)
N1i—Mn1—N1—C2−171.9 (18)O2—N3—C5—C7−48.8 (2)
Mn1—O1—N2—C426.1 (2)C4—N3—C5—C7140.13 (18)
Mn1—O1—N2—C6−149.81 (13)O2—N3—C5—C6−170.64 (18)
N4i—Mn1—N4—N5−71 (2)C4—N3—C5—C618.27 (18)
O1i—Mn1—N4—N5118.9 (3)O1—N2—C6—C10−42.4 (2)
O1—Mn1—N4—N5−61.1 (3)C4—N2—C6—C10141.14 (17)
N1—Mn1—N4—N521.0 (3)O1—N2—C6—C976.0 (2)
N1i—Mn1—N4—N5−159.0 (3)C4—N2—C6—C9−100.50 (18)
Mn1—N4—N5—N6137 (8)O1—N2—C6—C5−164.65 (15)
C3—S1—C1—C2−0.76 (16)C4—N2—C6—C518.85 (18)
S1—C1—C2—N1−0.1 (2)N3—C5—C6—N2−20.40 (16)
C3—N1—C2—C11.2 (2)C8—C5—C6—N293.45 (18)
Mn1—N1—C2—C1−164.58 (14)C7—C5—C6—N2−138.01 (17)
C2—N1—C3—C4176.71 (16)N3—C5—C6—C10−138.01 (17)
Mn1—N1—C3—C4−18.1 (2)C8—C5—C6—C10−24.2 (2)
C2—N1—C3—S1−1.76 (19)C7—C5—C6—C10104.4 (2)
Mn1—N1—C3—S1163.46 (8)N3—C5—C6—C992.35 (18)
C1—S1—C3—N11.47 (15)C8—C5—C6—C9−153.79 (17)
C1—S1—C3—C4−177.00 (16)C7—C5—C6—C9−25.3 (2)

Symmetry codes: (i) −x, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2202).

References

  • Aoki, C., Ishida, T. & Nogami, T. (2003). Inorg. Chem.42, 7616–7625. [PubMed]
  • Bruker (2002). SAINT and SMART Bruker AXS Inc., Madison, Winsonsin, USA.
  • Catala, L., Moigne, J. L., Gruber, N., Novoa, J. J., Rabu, P., Belorizky, E. & Turek, P. (2005). Chem. Eur. J.11, 2440–2454. [PubMed]
  • Li, L. C., Liao, D. Z., Jiang, Z. H. & &Yan, S. P. (2002). J. Chem. Soc. Dalton Trans. pp. 1350–1353.
  • Liu, Z. L., Zhao, Q. H., Li, S. Q., Liao, D. Z. & Jiang, Z. H. (2001). Inorg. Chem. Commun.4, 322–325.
  • Minguet, M., Amabilino, D. B., Cirujeda, J., Wurst, K., Mata, I., Molins, E., Novoa, J. J. & Veciana, J. (2000). Chem. Eur. J.6, 2350–2361. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Ullman, E. F., Call, L. & Osieckei, J. H. J. (1970). J. Org. Chem.35, 3623–3628.
  • Ullman, E. F., Osiecki, J. H., Boocock, D. G. B. & Darcy, R. (1972). J. Am. Chem. Soc.94, 7049–7059.
  • Wang, L.-Y., Chang, J.-L., Jiang, K., Ma, L.-F. & Wang, Y.-F. (2005). Acta Cryst. E61, m2230–m2231.
  • Westrip, S. P. (2009) publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography