PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 January 1; 65(Pt 1): o211.
Published online 2008 December 24. doi:  10.1107/S1600536808043560
PMCID: PMC2968115

(1S*,2S*)-1,2-Di-tert-butyl­glycol

Abstract

In the crystal structure of the title compound, C10H22O2, co-operative chains of O—H(...)O hydrogen bonds are established by intra- as well as inter­molecular inter­actions. These hydrogen bonds connect the mol­ecules into infinite strands along [100], with a binary level graph-set descriptor C 2 2(4). Excluding the H atoms on the hydr­oxy groups, the mol­ecule shows non-crystallographic C 2 symmetry.

Related literature

The compound was synthesized according to a published procedure (Boehrer et al., 1997 [triangle]). For the crystal structures of other ethane-1,2-diol derivatives with bulky substituents, see: Betz & Klüfers (2007 [triangle]); Allscher et al. (2008 [triangle]). For graph-set descriptors, see: Etter et al. (1990 [triangle]); Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o211-scheme1.jpg

Experimental

Crystal data

  • C10H22O2
  • M r = 174.28
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o211-efi3.jpg
  • a = 9.7799 (3) Å
  • b = 16.3879 (7) Å
  • c = 6.9771 (3) Å
  • V = 1118.23 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.07 mm−1
  • T = 200 (2) K
  • 0.30 × 0.09 × 0.02 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: none
  • 8640 measured reflections
  • 1490 independent reflections
  • 1253 reflections with I > 2σ(I)
  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.109
  • S = 1.05
  • 1490 reflections
  • 117 parameters
  • H-atom parameters constrained
  • Δρmax = 0.15 e Å−3
  • Δρmin = −0.15 e Å−3

Data collection: COLLECT (Nonius, 2004 [triangle]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO (Otwinowski & Minor, 1997 [triangle]) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808043560/bi2332sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808043560/bi2332Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

TK thanks the Hanns-Seidel-Stiftung for a PhD scholarship financed by the Bundesministerium für Bildung und Forschung.

supplementary crystallographic information

Comment

The title compound was synthesized as a potential chelating ligand with sterically demanding substituents on the carbon backbone to estimate the influence of steric pretense on coordination reactions with different central atoms.

In the molecule (Fig. 1) bond lengths and angles are found in the range apparent for other vicinal diols bearing sterically more demanding substituents (Betz & Klüfers, 2007, Allscher et al., 2008). While the tert-butyl groups adopt a staggered conformation with respect to the hydroxy groups, the O atoms are present in a nearly eclipsed arrangement. The reason for this unfavourable conformation becomes evident when examining intermolecular contacts.

In the crystal structure, inter- and intramolecular hydrogen bonds are present which connect the molecules into strands along [1 0 0] (Fig. 2). The bulky hydrophobic tert-butyl groups encase this strand of hydroxyl groups. The hydrogen bonds form cooperative chains. In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995) the descriptor for these chains on the binary level is C22(4).

Excluding the H atoms on the hydroxy groups, the molecule shows non-crystallographic C2 symmetry.

The molecular packing of the title compound is shown in Figure 3.

Experimental

The title compound was prepared according to a published procedure (Boehrer et al., 1997). Crystals suitable for X-ray studies were obtained upon recrystallization from boiling toluene.

Refinement

Due to the absence of a strong anomalous scatterer, the absolute structure parameter, which is 0.982 with an estimated standard deviation of 1.241 for the unmerged data set, is meaningless. Thus 1056 Friedel opposites have been merged and the absolute configuration has been arbitrarily chosen.

Carbon-bound as well as oxygen-bound H atoms were placed in calculated positions (C—H 1.00 Å for CH-groups, C—H 0.98 Å for methyl groups and O—H 0.84 Å for hydroxy groups) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C) for the CH-groups and 1.5Ueq(C) for methyl groups and 1.5Ueq(O) for the hydroxy groups.

Figures

Fig. 1.
The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level) for non-H atoms.
Fig. 2.
Hydrogen bonds in the crystal structure of the title compound, viewed along [0 0 1]. Underlying hydrogen bonds are not illustrated for clarity. Symmetry codes: ix + 1/2, -y + 1/2, -z + 2; iix - 1/2, -y + 1/2, -z + 2.
Fig. 3.
The packing of the title compound, viewed along [0 0 - 1].

Crystal data

C10H22O2F(000) = 392
Mr = 174.28Dx = 1.035 Mg m3
Orthorhombic, P21212Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2 2abCell parameters from 13560 reflections
a = 9.7799 (3) Åθ = 3.1–27.5°
b = 16.3879 (7) ŵ = 0.07 mm1
c = 6.9771 (3) ÅT = 200 K
V = 1118.23 (8) Å3Rod, colourless
Z = 40.30 × 0.09 × 0.02 mm

Data collection

Nonius KappaCCD diffractometer1253 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.040
MONTEL, graded multilayered X-ray opticsθmax = 27.5°, θmin = 3.2°
CCD; rotation images; thick slices scansh = −12→11
8640 measured reflectionsk = −19→21
1490 independent reflectionsl = −9→8

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.0621P)2 + 0.0637P] where P = (Fo2 + 2Fc2)/3
1490 reflections(Δ/σ)max < 0.001
117 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = −0.15 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.13030 (11)0.30082 (8)0.96003 (18)0.0402 (3)
H8110.04760.29220.98570.060*
O20.35411 (12)0.22582 (8)0.9762 (2)0.0437 (4)
H8210.30540.25481.04840.066*
C10.16231 (16)0.26595 (10)0.7782 (2)0.0330 (4)
H10.07920.23710.72920.040*
C20.27611 (16)0.20174 (10)0.8121 (2)0.0332 (4)
H20.33860.20350.69880.040*
C30.19990 (19)0.33399 (11)0.6353 (3)0.0393 (4)
C40.0811 (2)0.39538 (13)0.6286 (3)0.0551 (6)
H410.07310.42280.75300.083*
H42−0.00420.36650.60010.083*
H430.09870.43600.52850.083*
C50.2176 (3)0.29796 (15)0.4358 (3)0.0628 (6)
H510.22810.34220.34240.094*
H520.13700.26530.40310.094*
H530.29920.26320.43350.094*
C60.3298 (2)0.37869 (13)0.6961 (3)0.0516 (5)
H610.40750.34090.69170.077*
H620.31880.39940.82700.077*
H630.34660.42440.60870.077*
C70.22584 (18)0.11294 (12)0.8338 (3)0.0409 (5)
C80.1634 (3)0.08512 (14)0.6441 (4)0.0687 (7)
H810.22740.09670.53940.103*
H820.07760.11450.62180.103*
H830.14530.02640.64940.103*
C90.1230 (2)0.10514 (15)0.9965 (4)0.0656 (7)
H910.09860.04761.01380.098*
H920.04070.13660.96530.098*
H930.16340.12621.11500.098*
C100.3495 (2)0.05872 (12)0.8749 (4)0.0542 (5)
H1010.38960.07400.99850.081*
H1020.41760.06580.77330.081*
H1030.32040.00150.87930.081*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0321 (6)0.0536 (8)0.0349 (6)0.0056 (6)0.0041 (5)−0.0067 (6)
O20.0344 (6)0.0518 (8)0.0448 (7)0.0046 (5)−0.0136 (6)−0.0073 (6)
C10.0260 (7)0.0416 (9)0.0314 (8)0.0013 (7)−0.0020 (7)−0.0047 (7)
C20.0251 (7)0.0428 (9)0.0317 (8)0.0007 (7)−0.0004 (6)−0.0032 (7)
C30.0397 (9)0.0446 (10)0.0334 (9)0.0051 (8)−0.0020 (8)0.0026 (8)
C40.0548 (11)0.0537 (12)0.0568 (12)0.0140 (10)−0.0059 (11)0.0094 (11)
C50.0841 (15)0.0716 (15)0.0327 (10)0.0129 (13)0.0028 (10)0.0025 (10)
C60.0452 (11)0.0493 (11)0.0602 (13)−0.0051 (9)0.0029 (10)0.0121 (10)
C70.0341 (9)0.0374 (9)0.0513 (11)0.0025 (7)0.0012 (8)−0.0015 (8)
C80.0733 (15)0.0485 (12)0.0843 (18)−0.0004 (12)−0.0263 (14)−0.0208 (12)
C90.0580 (13)0.0499 (12)0.0889 (18)−0.0016 (10)0.0295 (12)0.0095 (12)
C100.0463 (10)0.0435 (11)0.0729 (14)0.0087 (9)−0.0010 (11)0.0023 (11)

Geometric parameters (Å, °)

O1—C11.426 (2)C5—H530.980
O1—H8110.840C6—H610.980
O2—C21.431 (2)C6—H620.980
O2—H8210.840C6—H630.980
C1—C31.540 (3)C7—C91.522 (3)
C1—C21.550 (2)C7—C81.527 (3)
C1—H11.000C7—C101.528 (3)
C2—C71.543 (3)C8—H810.980
C2—H21.000C8—H820.980
C3—C51.522 (3)C8—H830.980
C3—C61.527 (3)C9—H910.980
C3—C41.538 (2)C9—H920.980
C4—H410.980C9—H930.980
C4—H420.980C10—H1010.980
C4—H430.980C10—H1020.980
C5—H510.980C10—H1030.980
C5—H520.980
C1—O1—H811109.5H52—C5—H53109.5
C2—O2—H821109.5C3—C6—H61109.5
O1—C1—C3109.77 (14)C3—C6—H62109.5
O1—C1—C2107.08 (13)H61—C6—H62109.5
C3—C1—C2114.77 (13)C3—C6—H63109.5
O1—C1—H1108.3H61—C6—H63109.5
C3—C1—H1108.3H62—C6—H63109.5
C2—C1—H1108.3C9—C7—C8110.91 (18)
O2—C2—C7110.58 (14)C9—C7—C10109.53 (17)
O2—C2—C1108.52 (13)C8—C7—C10107.79 (17)
C7—C2—C1115.24 (14)C9—C7—C2111.26 (16)
O2—C2—H2107.4C8—C7—C2108.91 (16)
C7—C2—H2107.4C10—C7—C2108.35 (14)
C1—C2—H2107.4C7—C8—H81109.5
C5—C3—C6110.22 (19)C7—C8—H82109.5
C5—C3—C4108.20 (17)H81—C8—H82109.5
C6—C3—C4108.86 (16)C7—C8—H83109.5
C5—C3—C1109.78 (16)H81—C8—H83109.5
C6—C3—C1111.47 (15)H82—C8—H83109.5
C4—C3—C1108.22 (14)C7—C9—H91109.5
C3—C4—H41109.5C7—C9—H92109.5
C3—C4—H42109.5H91—C9—H92109.5
H41—C4—H42109.5C7—C9—H93109.5
C3—C4—H43109.5H91—C9—H93109.5
H41—C4—H43109.5H92—C9—H93109.5
H42—C4—H43109.5C7—C10—H101109.5
C3—C5—H51109.5C7—C10—H102109.5
C3—C5—H52109.5H101—C10—H102109.5
H51—C5—H52109.5C7—C10—H103109.5
C3—C5—H53109.5H101—C10—H103109.5
H51—C5—H53109.5H102—C10—H103109.5
O1—C1—C2—O2−28.26 (17)O1—C1—C3—C4−55.45 (18)
C3—C1—C2—O293.86 (17)C2—C1—C3—C4−176.09 (15)
O1—C1—C2—C796.34 (17)O2—C2—C7—C966.46 (19)
C3—C1—C2—C7−141.55 (15)C1—C2—C7—C9−57.1 (2)
O1—C1—C3—C5−173.34 (16)O2—C2—C7—C8−170.99 (15)
C2—C1—C3—C566.0 (2)C1—C2—C7—C865.5 (2)
O1—C1—C3—C664.23 (18)O2—C2—C7—C10−54.00 (19)
C2—C1—C3—C6−56.4 (2)C1—C2—C7—C10−177.51 (16)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H811···O2i0.841.932.7721 (16)176
O2—H821···O10.841.972.5129 (16)121

Symmetry codes: (i) x−1/2, −y+1/2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2332).

References

  • Allscher, T., Betz, R., Herdlicka, S. & Klüfers, P. (2008). Acta Cryst. C64, o111–o113. [PubMed]
  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Betz, R. & Klüfers, P. (2007). Acta Cryst. E63, o4752.
  • Boehrer, G., Knorr, R., Boehrer, P. & Schubert, B. (1997). Liebigs Ann. Recl, pp. 193–202.
  • Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Nonius (2004). COLLECT Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography