PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 January 1; 65(Pt 1): o210.
Published online 2008 December 24. doi:  10.1107/S1600536808043456
PMCID: PMC2968114

3-(3-Nitro­benzyl­idene)pentane-2,4-dione

Abstract

In the title mol­ecule, C12H11NO4, the two acetyl C—C=O planes are inclined to the benzene ring at angles of 18.03 (8) and 80.75 (7)°. In the crystal, adjacent mol­ecules are linked into centrosymmetric dimers by pairs of C—H(...)O inter­actions.

Related literature

For metal-complexes with β-diketones, see: Youngme et al. (2007 [triangle]); Ma et al. (2005 [triangle]); Soldatov et al. (2003 [triangle]); Hinckley (1969 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o210-scheme1.jpg

Experimental

Crystal data

  • C12H11NO4
  • M r = 233.22
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o210-efi1.jpg
  • a = 16.0634 (9) Å
  • b = 5.2470 (3) Å
  • c = 14.9774 (9) Å
  • β = 114.117 (1)°
  • V = 1152.18 (12) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 298 (2) K
  • 0.20 × 0.10 × 0.10 mm

Data collection

  • Bruker SMART 4K CCD area-detector diffractometer
  • Absorption correction: none
  • 4779 measured reflections
  • 1998 independent reflections
  • 1400 reflections with I > 2σ(I)
  • R int = 0.048

Refinement

  • R[F 2 > 2σ(F 2)] = 0.068
  • wR(F 2) = 0.171
  • S = 1.07
  • 1998 reflections
  • 156 parameters
  • H-atom parameters constrained
  • Δρmax = 0.21 e Å−3
  • Δρmin = −0.17 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1999 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808043456/is2374sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808043456/is2374Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author is grateful to Xiangfan University for financial support.

supplementary crystallographic information

Comment

β-Diketone as an excellent chelating group has been widely used in supramolecular chemistry. It can form a variety of complexes with various transition-metals (e.g. Cu, Co, Ni, Mn, Pd, etc.) or rare-earth metals (e.g. Eu, Sm, La, Gd, etc.) (Youngme et al., 2007; Ma et al., 2005). These metal complexes have significant applications in material science or act as chemical shift reagents (Soldatov et al., 2003; Hinckley, 1969). Herein, we prepared and crystallized 3-(3-nitrobenzylidene)pentane-2,4-dione, (I).

The title compound can be considered as an alkene having two CH3C(O)- substituents on one side of the double bond and the (NO2)C6H3– unit substituend on the other. The acetyl group trans to the H substituent is not coplanar with the double bond and the aromatic system as a twist is necessary to avoid crowding with the H atom of the aromatic ring. The molecules are connected mainly by intermolecular C—H···O interactions.

Experimental

Piperidine (0.85 g, 10 mmol) was added to a dimethylformamide solution (30 ml) of acetylacetone (1 ml, 10 mmol) and 3-nitrobenzaldehyde (1.51 g, 10 mmol). The mixture was heated at 413 K for 6 h. The mixture was poured into water (300 ml) and the organic phase was extracted with ethyl acetate. The ethyl acetate extract was dried over sodium sulfate and the solvent removed under reduced pressure to yield the crude product, which was recrystallized from ethanol to afford colourless crystals in 50% yield.

Refinement

All H atoms were positioned geometrically (C—H = 0.93–0.96 Å) and refined as riding, allowing for free rotation of the methyl groups. The constraint Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) (methyl C) was applied.

Figures

Fig. 1.
View of the title molecule, showing the atom-labelling scheme. The displacement ellipsoids are drawn at the 30% probability level.

Crystal data

C12H11NO4F(000) = 488
Mr = 233.22Dx = 1.344 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1131 reflections
a = 16.0634 (9) Åθ = 2.7–24.3°
b = 5.2470 (3) ŵ = 0.10 mm1
c = 14.9774 (9) ÅT = 298 K
β = 114.117 (1)°Block, colorless
V = 1152.18 (12) Å30.20 × 0.10 × 0.10 mm
Z = 4

Data collection

Bruker SMART 4K CCD area-detector diffractometer1400 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.048
graphiteθmax = 25.0°, θmin = 2.7°
[var phi] and ω scansh = −19→17
4779 measured reflectionsk = −6→6
1998 independent reflectionsl = −11→17

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.171H-atom parameters constrained
S = 1.07w = 1/[σ2(Fo2) + (0.085P)2 + 0.2322P] where P = (Fo2 + 2Fc2)/3
1998 reflections(Δ/σ)max = 0.015
156 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = −0.16 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.37414 (19)−0.0732 (5)0.46603 (19)0.0328 (7)
C20.31796 (19)0.1238 (5)0.4642 (2)0.0359 (7)
C30.30722 (19)0.1886 (5)0.54900 (19)0.0348 (7)
C40.3576 (2)0.0531 (6)0.6342 (2)0.0405 (8)
C50.4149 (2)−0.1425 (6)0.6345 (2)0.0458 (8)
C60.4239 (2)−0.2098 (6)0.5501 (2)0.0399 (8)
C70.2427 (2)0.3821 (5)0.5535 (2)0.0389 (8)
C80.1758 (2)0.5058 (5)0.4812 (2)0.0361 (7)
C90.1551 (2)0.4824 (5)0.3737 (2)0.0374 (7)
C100.0895 (2)0.2825 (6)0.3165 (2)0.0536 (9)
C110.1120 (2)0.6808 (6)0.5006 (2)0.0434 (8)
C120.1252 (3)0.7457 (7)0.6020 (2)0.0606 (10)
H20.28710.21420.40660.043*
H40.35240.09570.69190.049*
H50.4478−0.22990.69230.055*
H60.4621−0.34260.54960.048*
H70.24940.42540.61630.047*
H10A0.08080.29200.24920.080*
H10B0.03220.30870.32110.080*
H10C0.11320.11770.34230.080*
H12A0.08310.87740.60040.091*
H12B0.18650.80450.63800.091*
H12C0.11460.59710.63330.091*
O10.34549 (17)−0.0057 (5)0.30328 (15)0.0605 (7)
O20.4208 (2)−0.3406 (5)0.37212 (17)0.0735 (9)
O30.19108 (17)0.6251 (4)0.33704 (16)0.0612 (7)
O40.04744 (19)0.7640 (5)0.43075 (17)0.0764 (9)
N10.38064 (17)−0.1449 (5)0.37404 (18)0.0446 (7)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0375 (16)0.0307 (15)0.0255 (15)−0.0020 (13)0.0081 (12)0.0000 (12)
C20.0389 (18)0.0356 (17)0.0271 (15)0.0044 (14)0.0073 (13)0.0059 (13)
C30.0415 (18)0.0329 (16)0.0252 (15)0.0022 (14)0.0086 (13)0.0008 (12)
C40.0454 (19)0.0436 (18)0.0279 (16)0.0054 (16)0.0101 (14)0.0034 (13)
C50.053 (2)0.0437 (19)0.0331 (18)0.0134 (16)0.0098 (15)0.0120 (14)
C60.0411 (18)0.0362 (17)0.0372 (17)0.0087 (14)0.0106 (14)0.0055 (13)
C70.0489 (19)0.0360 (17)0.0276 (15)0.0043 (15)0.0113 (14)0.0002 (13)
C80.0436 (18)0.0282 (15)0.0318 (16)0.0010 (14)0.0106 (13)−0.0005 (12)
C90.0459 (19)0.0255 (15)0.0337 (17)0.0109 (14)0.0090 (14)0.0030 (13)
C100.060 (2)0.049 (2)0.0380 (18)−0.0040 (17)0.0067 (16)−0.0081 (15)
C110.051 (2)0.0351 (17)0.0397 (18)0.0093 (16)0.0144 (16)0.0029 (15)
C120.067 (2)0.069 (2)0.049 (2)0.024 (2)0.0270 (19)−0.0043 (18)
O10.0875 (19)0.0624 (16)0.0339 (13)0.0208 (14)0.0272 (13)0.0112 (12)
O20.099 (2)0.0719 (18)0.0522 (15)0.0440 (16)0.0329 (14)−0.0027 (13)
O30.0875 (19)0.0539 (15)0.0387 (13)−0.0124 (14)0.0223 (13)0.0093 (11)
O40.085 (2)0.080 (2)0.0463 (15)0.0496 (16)0.0092 (14)0.0050 (13)
N10.0504 (17)0.0471 (16)0.0372 (15)0.0072 (14)0.0187 (13)−0.0009 (13)

Geometric parameters (Å, °)

C1—C61.384 (4)C8—C91.511 (4)
C2—C11.365 (4)C9—C101.485 (4)
C2—H20.9300C10—H10A0.9600
C3—C21.392 (4)C10—H10B0.9600
C3—C41.394 (4)C10—H10C0.9600
C3—C71.472 (4)C11—C121.486 (4)
C4—C51.377 (4)C12—H12A0.9600
C4—H40.9300C12—H12B0.9600
C5—C61.376 (4)C12—H12C0.9600
C5—H50.9300O3—C91.206 (4)
C6—H60.9300O4—C111.214 (3)
C7—H70.9300N1—O11.219 (3)
C8—C71.341 (4)N1—O21.219 (3)
C8—C111.490 (4)N1—C11.472 (4)
C1—C6—H6121.2C9—C10—H10A109.5
C1—C2—C3119.6 (3)C9—C10—H10B109.5
C1—C2—H2120.2C9—C10—H10C109.5
C2—C3—C4117.9 (3)C10—C9—C8117.8 (3)
C2—C3—C7124.2 (2)C11—C8—C9112.9 (2)
C2—C1—C6122.8 (3)C11—C12—H12A109.5
C2—C1—N1118.3 (2)C11—C12—H12B109.5
C3—C2—H2120.2C11—C12—H12C109.5
C3—C7—H7114.9C12—C11—C8121.2 (3)
C3—C4—H4119.3H10A—C10—H10B109.5
C4—C3—C7117.8 (3)H10A—C10—H10C109.5
C4—C5—H5119.7H10B—C10—H10C109.5
C5—C6—C1117.7 (3)H12A—C12—H12B109.5
C5—C6—H6121.1H12A—C12—H12C109.5
C5—C4—C3121.4 (3)H12B—C12—H12C109.5
C5—C4—H4119.3O1—N1—O2123.1 (3)
C6—C1—N1118.9 (3)O1—N1—C1118.4 (2)
C6—C5—C4120.6 (3)O2—N1—C1118.5 (3)
C6—C5—H5119.7O3—C9—C10122.4 (3)
C7—C8—C11121.9 (3)O3—C9—C8119.8 (3)
C7—C8—C9125.2 (3)O4—C11—C12120.9 (3)
C8—C7—C3130.1 (3)O4—C11—C8117.8 (3)
C8—C7—H7114.9
C2—C1—C6—C50.5 (5)C7—C8—C11—O4−172.3 (3)
C2—C3—C4—C5−1.3 (5)C7—C8—C11—C126.0 (5)
C2—C3—C7—C89.8 (5)C9—C8—C11—O46.7 (4)
C3—C2—C1—C6−1.9 (5)C9—C8—C11—C12−175.1 (3)
C3—C2—C1—N1177.1 (2)C9—C8—C7—C3−4.2 (5)
C3—C4—C5—C6−0.1 (5)C11—C8—C7—C3174.6 (3)
C4—C5—C6—C10.5 (5)C11—C8—C9—O390.6 (4)
C4—C3—C2—C12.3 (4)C11—C8—C9—C10−88.8 (3)
C4—C3—C7—C8−167.0 (3)O1—N1—C1—C29.6 (4)
C7—C3—C4—C5175.7 (3)O1—N1—C1—C6−171.4 (3)
C7—C8—C9—O3−90.5 (4)O2—N1—C1—C68.7 (4)
C7—C3—C2—C1−174.5 (3)O2—N1—C1—C2−170.3 (3)
C7—C8—C9—C1090.1 (4)N1—C1—C6—C5−178.5 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C6—H6···O2i0.932.423.282 (4)153

Symmetry codes: (i) −x+1, −y−1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2374).

References

  • Bruker (1997). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (1999). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Hinckley, C. C. (1969). J. Am. Chem. Soc.91, 5160–5162. [PubMed]
  • Ma, D.-Z., Wu, Y.-Q. & Zuo, X. (2005). Mater. Lett.59, 3678–3681.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Soldatov, D. V., Tinnemans, P., Enright, G. D., Ratcliff, C. I., Diamente, P. R. & Ripmeester, J. A. (2003). Chem. Mater.15, 3826–3840.
  • Youngme, S., Chotkhun, T., Chaichit, N., van Albada, G. A. & Reedijk, J. (2007). Inorg. Chem. Commun.10, 843–848.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography