PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 January 1; 65(Pt 1): o207.
Published online 2008 December 24. doi:  10.1107/S1600536808043559
PMCID: PMC2968112

2-(Trimethyl­siloxy)adamantane-2-carbonitrile

Abstract

In the crystal structure of the title compound, C14H23NOSi, cyclic dimeric units are established by two very weak hydrogen bonds of the type C—H(...)N with an H(...)N distance which is only slightly shorter than the sum of the van der Waals radii of 2.75 Å. The graph-set descriptor on the unitary level is R 2 2(14) for the cyclic dimer.

Related literature

For a general synthesis of trimethyl­silan­yloxy-substituted cyano­hydrines, see Evans et al. (1974 [triangle]). For the crystal structure of a related compound, see Hickmott et al. (1985 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]); Etter et al. (1990 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o207-scheme1.jpg

Experimental

Crystal data

  • C14H23NOSi
  • M r = 249.42
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o207-efi1.jpg
  • a = 6.712 (2) Å
  • b = 9.440 (3) Å
  • c = 12.439 (2) Å
  • α = 106.19 (2)°
  • β = 102.35 (2)°
  • γ = 100.34 (3)°
  • V = 715.0 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.15 mm−1
  • T = 200 (2) K
  • 0.38 × 0.34 × 0.18 mm

Data collection

  • Oxford Xcalibur diffractometer
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2005 [triangle]) T min = 0.91, T max = 0.97
  • 5687 measured reflections
  • 2872 independent reflections
  • 2097 reflections with I > 2σ(I)
  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.099
  • S = 1.06
  • 2872 reflections
  • 157 parameters
  • H-atom parameters constrained
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.18 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2005 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2005 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]) and Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808043559/lh2736sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808043559/lh2736Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Professor Thomas M. Klapötke for generous allocation of diffractometer time.

supplementary crystallographic information

Comment

2-Trimethylsilanyloxy-adamantane-2-carbonitrile was prepared as an intermediate in the synthesis of (2-adamantyl)-glycolic acid.

In the crystal packing of the title compound, C14H23NOSi, dimeric units are established by two very weak hydrogen bonds of the type C–H···N with an H···N distance of 2.68 Å, which is only slightly shorter than the sum of the van-der-Waals radii of 2.75 Å (see Fig. 2).

The graph-set descriptor on the unitary level for the cyclic dimer is R22(14) (Etter et al., 1990; Bernstein et al., 1995).

The packing of the title compound is shown in Figure 3.

In the molecule the cyano group and the trimethylsilanyloxy group reside on the same C atom resembling a similar compound apparent in the literature (Hickmott et al., 1985). The methyl groups on the silicon atom adopt a nearly staggered conformation with respect to the substituents on the functionalized carbon atom. Bond lengths and angles in the carbocycle are in good agreement with the ones observed for other adamantane-derived compounds.

Experimental

The title compound was prepared in adoption of a published procedure (Evans et al., 1974) upon Lewis-acid catalyzed addition of trimethylsilylcyanide to 2-adamantanone.

Crystals suitable for X-ray analysis were obtained directly from the crystallized reaction product obtained after distillation under reduced pressure.

Refinement

Carbon-bound H atoms were placed in calculated positions (C—H 1.00 Å for bridgehead C atoms, C—H 0.99 Å for methylene groups and C—H 0.98 Å for methyl groups) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C) for bridgehead C atoms and methylene groups and 1.5Ueq(C) for methyl groups.

Figures

Fig. 1.
The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level) for non-H atoms.
Fig. 2.
Intermolecular interactions in the crystal structure of the title compound, viewed approximately along [-1 0 0].
Fig. 3.
The packing of the title compound, viewed along [-1 0 0].

Crystal data

C14H23NOSiZ = 2
Mr = 249.42F(000) = 272
Triclinic, P1Dx = 1.159 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.712 (2) ÅCell parameters from 3060 reflections
b = 9.440 (3) Åθ = 4.1–26.3°
c = 12.439 (2) ŵ = 0.15 mm1
α = 106.19 (2)°T = 200 K
β = 102.35 (2)°Block, colourless
γ = 100.34 (3)°0.38 × 0.34 × 0.18 mm
V = 715.0 (4) Å3

Data collection

Oxford Xcalibur diffractometer2872 independent reflections
Radiation source: fine-focus sealed tube2097 reflections with I > 2σ(I)
graphiteRint = 0.019
ω scansθmax = 26.3°, θmin = 4.1°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2005)h = −8→8
Tmin = 0.91, Tmax = 0.97k = −11→8
5687 measured reflectionsl = −15→15

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.0562P)2] where P = (Fo2 + 2Fc2)/3
2872 reflections(Δ/σ)max < 0.001
157 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = −0.18 e Å3

Special details

Experimental. CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.32.5 (release 08-05-2007 CrysAlis171 .NET) (compiled May 8 2007,13:10:02) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Si0.23305 (7)0.50326 (5)0.26051 (3)0.03296 (15)
O0.32961 (14)0.66707 (11)0.24268 (8)0.0301 (3)
N0.6710 (3)0.7967 (2)0.51049 (13)0.0652 (5)
C10.6875 (2)0.72644 (17)0.22407 (13)0.0330 (4)
H10.70900.62660.23040.040*
C20.5289 (2)0.77526 (16)0.29081 (12)0.0284 (3)
C30.5002 (2)0.93025 (16)0.28158 (13)0.0345 (4)
H30.39950.96440.32560.041*
C40.4126 (2)0.91123 (17)0.15282 (13)0.0363 (4)
H410.27550.83370.11980.044*
H420.38881.00900.14540.044*
C50.5668 (3)0.86187 (18)0.08534 (14)0.0407 (4)
H50.50840.85000.00140.049*
C60.5977 (3)0.70911 (17)0.09590 (13)0.0380 (4)
H610.46080.63130.06290.046*
H620.69560.67460.05120.046*
C70.8992 (2)0.8475 (2)0.27499 (16)0.0479 (4)
H710.95670.86020.35830.057*
H721.00160.81420.23320.057*
C80.7134 (3)1.04922 (18)0.33150 (16)0.0516 (5)
H810.77191.06120.41460.062*
H820.69411.14900.32670.062*
C90.7790 (3)0.9803 (2)0.13533 (18)0.0560 (5)
H910.87840.94730.09120.067*
H920.76081.07920.12790.067*
C100.8675 (3)0.9988 (2)0.26269 (17)0.0536 (5)
H101.00581.07740.29540.064*
C110.6099 (2)0.78913 (19)0.41541 (14)0.0416 (4)
C120.4270 (3)0.38626 (19)0.26501 (15)0.0512 (5)
H1210.46270.36060.19080.077*
H1220.36600.29220.27810.077*
H1230.55490.44410.32860.077*
C130.0044 (3)0.40872 (19)0.13013 (14)0.0471 (4)
H131−0.09280.47460.12730.071*
H132−0.06870.31140.13410.071*
H1330.05330.39010.05990.071*
C140.1455 (3)0.5381 (2)0.39525 (15)0.0545 (5)
H1410.26770.59220.46330.082*
H1420.07940.44040.40140.082*
H1430.04340.60020.39230.082*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Si0.0365 (3)0.0333 (3)0.0339 (3)0.00931 (19)0.01383 (19)0.01512 (19)
O0.0236 (5)0.0318 (6)0.0344 (6)0.0042 (4)0.0052 (4)0.0141 (5)
N0.0664 (11)0.0837 (12)0.0349 (9)0.0152 (9)−0.0005 (8)0.0168 (8)
C10.0293 (8)0.0309 (8)0.0452 (9)0.0136 (7)0.0133 (7)0.0164 (7)
C20.0249 (7)0.0287 (8)0.0268 (7)0.0055 (6)0.0017 (6)0.0066 (6)
C30.0319 (8)0.0254 (8)0.0398 (9)0.0106 (7)0.0049 (7)0.0027 (7)
C40.0312 (8)0.0272 (8)0.0483 (10)0.0073 (7)0.0021 (7)0.0161 (7)
C50.0407 (9)0.0429 (10)0.0436 (9)0.0084 (8)0.0121 (8)0.0235 (8)
C60.0413 (9)0.0375 (9)0.0408 (9)0.0128 (7)0.0209 (7)0.0127 (7)
C70.0267 (8)0.0544 (11)0.0670 (12)0.0122 (8)0.0097 (8)0.0280 (9)
C80.0480 (11)0.0279 (9)0.0594 (12)0.0033 (8)−0.0066 (9)0.0050 (8)
C90.0388 (10)0.0535 (12)0.0840 (14)0.0039 (9)0.0149 (10)0.0419 (11)
C100.0253 (8)0.0424 (10)0.0826 (14)−0.0048 (7)−0.0007 (9)0.0251 (10)
C110.0385 (9)0.0457 (10)0.0362 (10)0.0126 (8)0.0051 (8)0.0095 (8)
C120.0609 (12)0.0443 (10)0.0617 (12)0.0231 (9)0.0235 (10)0.0273 (9)
C130.0434 (10)0.0402 (10)0.0525 (11)−0.0013 (8)0.0119 (8)0.0158 (8)
C140.0629 (12)0.0661 (12)0.0489 (11)0.0169 (10)0.0317 (10)0.0285 (9)

Geometric parameters (Å, °)

Si—O1.6594 (11)C6—H610.9900
Si—C131.8491 (19)C6—H620.9900
Si—C121.8540 (17)C7—C101.526 (2)
Si—C141.8562 (16)C7—H710.9900
O—C21.4200 (17)C7—H720.9900
N—C111.143 (2)C8—C101.535 (2)
C1—C61.530 (2)C8—H810.9900
C1—C71.535 (2)C8—H820.9900
C1—C21.5411 (19)C9—C101.516 (3)
C1—H11.0000C9—H910.9900
C2—C111.489 (2)C9—H920.9900
C2—C31.5415 (19)C10—H101.0000
C3—C41.531 (2)C12—H1210.9800
C3—C81.532 (2)C12—H1220.9800
C3—H31.0000C12—H1230.9800
C4—C51.523 (2)C13—H1310.9800
C4—H410.9900C13—H1320.9800
C4—H420.9900C13—H1330.9800
C5—C91.525 (2)C14—H1410.9800
C5—C61.530 (2)C14—H1420.9800
C5—H51.0000C14—H1430.9800
O—Si—C13102.98 (7)C10—C7—C1109.55 (13)
O—Si—C12111.91 (7)C10—C7—H71109.8
C13—Si—C12110.75 (8)C1—C7—H71109.8
O—Si—C14110.55 (7)C10—C7—H72109.8
C13—Si—C14110.49 (9)C1—C7—H72109.8
C12—Si—C14109.99 (8)H71—C7—H72108.2
C2—O—Si133.06 (9)C3—C8—C10109.94 (13)
C6—C1—C7109.53 (13)C3—C8—H81109.7
C6—C1—C2108.61 (11)C10—C8—H81109.7
C7—C1—C2110.13 (13)C3—C8—H82109.7
C6—C1—H1109.5C10—C8—H82109.7
C7—C1—H1109.5H81—C8—H82108.2
C2—C1—H1109.5C10—C9—C5109.63 (15)
O—C2—C11108.81 (12)C10—C9—H91109.7
O—C2—C1111.04 (11)C5—C9—H91109.7
C11—C2—C1109.74 (12)C10—C9—H92109.7
O—C2—C3108.61 (11)C5—C9—H92109.7
C11—C2—C3109.88 (12)H91—C9—H92108.2
C1—C2—C3108.74 (12)C9—C10—C7110.15 (16)
C4—C3—C8109.24 (14)C9—C10—C8110.01 (14)
C4—C3—C2108.53 (12)C7—C10—C8108.35 (15)
C8—C3—C2109.88 (12)C9—C10—H10109.4
C4—C3—H3109.7C7—C10—H10109.4
C8—C3—H3109.7C8—C10—H10109.4
C2—C3—H3109.7N—C11—C2178.65 (18)
C5—C4—C3110.11 (12)Si—C12—H121109.5
C5—C4—H41109.6Si—C12—H122109.5
C3—C4—H41109.6H121—C12—H122109.5
C5—C4—H42109.6Si—C12—H123109.5
C3—C4—H42109.6H121—C12—H123109.5
H41—C4—H42108.2H122—C12—H123109.5
C4—C5—C9110.22 (14)Si—C13—H131109.5
C4—C5—C6108.75 (12)Si—C13—H132109.5
C9—C5—C6109.20 (14)H131—C13—H132109.5
C4—C5—H5109.6Si—C13—H133109.5
C9—C5—H5109.6H131—C13—H133109.5
C6—C5—H5109.6H132—C13—H133109.5
C1—C6—C5109.87 (12)Si—C14—H141109.5
C1—C6—H61109.7Si—C14—H142109.5
C5—C6—H61109.7H141—C14—H142109.5
C1—C6—H62109.7Si—C14—H143109.5
C5—C6—H62109.7H141—C14—H143109.5
H61—C6—H62108.2H142—C14—H143109.5
C13—Si—O—C2−160.82 (12)C3—C4—C5—C660.43 (16)
C12—Si—O—C2−41.84 (13)C7—C1—C6—C5−59.17 (16)
C14—Si—O—C281.13 (13)C2—C1—C6—C561.14 (16)
Si—O—C2—C11−37.90 (16)C4—C5—C6—C1−60.41 (17)
Si—O—C2—C183.00 (14)C9—C5—C6—C159.90 (18)
Si—O—C2—C3−157.48 (10)C6—C1—C7—C1058.48 (17)
C6—C1—C2—O58.21 (15)C2—C1—C7—C10−60.90 (18)
C7—C1—C2—O178.15 (11)C4—C3—C8—C10−58.61 (17)
C6—C1—C2—C11178.56 (12)C2—C3—C8—C1060.35 (18)
C7—C1—C2—C11−61.50 (17)C4—C5—C9—C1059.23 (18)
C6—C1—C2—C3−61.23 (15)C6—C5—C9—C10−60.17 (18)
C7—C1—C2—C358.71 (15)C5—C9—C10—C760.26 (19)
O—C2—C3—C4−59.91 (15)C5—C9—C10—C8−59.12 (19)
C11—C2—C3—C4−178.82 (12)C1—C7—C10—C9−59.28 (19)
C1—C2—C3—C461.05 (15)C1—C7—C10—C861.10 (18)
O—C2—C3—C8−179.29 (12)C3—C8—C10—C959.34 (19)
C11—C2—C3—C861.79 (17)C3—C8—C10—C7−61.12 (18)
C1—C2—C3—C8−58.34 (16)O—C2—C11—N44 (7)
C8—C3—C4—C558.71 (16)C1—C2—C11—N−77 (7)
C2—C3—C4—C5−61.09 (16)C3—C2—C11—N163 (7)
C3—C4—C5—C9−59.25 (17)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C10—H10···Ni1.002.683.516 (3)141

Symmetry codes: (i) −x+2, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2736).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  • Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [PubMed]
  • Evans, D. A., Carroll, G. L. & Truesdale, L. K. (1974). J. Org. Chem.39, 914–917.
  • Hickmott, P. W., Wood, S. & Murray-Rust, P. (1985). J. Chem. Soc. Perkin Trans. 1, pp. 2033–2038.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, United Kingdom.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography