PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 January 1; 65(Pt 1): o203–o204.
Published online 2008 December 24. doi:  10.1107/S1600536808043213
PMCID: PMC2968109

3,3′-Dibromo-4,4′-[(1R,2R)-cyclohexane-1,2-diyldiimino]dipent-3-en-2-one

Abstract

The asymmetric unit of the title compound, C16H24Br2N2O2, contains two independent mol­ecules, each which has two intra­molecular N—H(...)O hydrogen bonds linking the amine N atoms to the enolic O atoms of the same acacH-imine unit. In the crystal, the mol­ecules are lined up by inter­molecular weak C—H(...)O hydrogen bonds, forming two vertical each other two-dimensional chains along the a axis and b axis of the unit cell, respectively.

Related literature

For general background, see: Bottcher et al. (1997 [triangle]); Bu et al. (1997 [triangle]); Chimpalee et al. (2000 [triangle]); Dominiak et al. (2003 [triangle]); Gilli et al. (1989 [triangle]); McCann et al. (2001 [triangle]); Na et al. (2002 [triangle]); Ozkar et al. (2004 [triangle]); Tacke et al. (2003 [triangle]); Zhang et al. (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o203-scheme1.jpg

Experimental

Crystal data

  • C16H24Br2N2O2
  • M r = 436.19
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o203-efi1.jpg
  • a = 9.249 (5) Å
  • b = 9.350 (6) Å
  • c = 21.82 (2) Å
  • β = 99.122 (13)°
  • V = 1863 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 4.36 mm−1
  • T = 298 (2) K
  • 0.21 × 0.18 × 0.16 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.461, T max = 0.542 (expected range = 0.424–0.498)
  • 12101 measured reflections
  • 3433 independent reflections
  • 1894 reflections with I > 2σ(I)
  • R int = 0.055

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.096
  • S = 0.97
  • 3433 reflections
  • 405 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.38 e Å−3
  • Δρmin = −0.42 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808043213/at2694sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808043213/at2694Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We acknowledge the support of the Natural Science Foundation and the International Cooperation Foundation of Guizhou Province, P. R. China.

supplementary crystallographic information

Comment

Schiff base obtained from condensation of acetylacetone and different diamines have been used as ligand for the complex formation with a variety of transition metals (Bottcher et al., 1997; McCann et al., 2001; Na et al., 2002; Ozkar et al., 2004; Tacke et al., 2003). and have found immense analytical applications (Chimpalee et al., 2000; Zhang et al., 2003). In this work, we report a crystal structure of N, N'-bis(bromo-acetylacetone)-1R,2R-diaminocyclohexane ligands.

The crystal structure of the title compound is shown in Fig. 1, each dissymmetrical unit cell contains two vertical each other independent molecules. Each molecule has two intramolecular N+—H···O- hydrogen bonds, which links each nitrogen atoms to the corresponding nearby terminal oxygen atoms of the same acacH-imine unit (N1—H1···O1, N2—H2···O2, N3—H3···O3 and N4—H4···O4, Table 1) such that a coplanar six-membered ring is generated. As shown in Fig. 2, the molecules of the title compound are lined up by the intermolecular interaction (C—H···O, Table 1.) forming two vertical each other two-dimensional chains along the a axis and b axis of the unit cell, respectively. The structure also shows a non-coplanar array for the (R, R)-cyclohexanediamine moiety and both of the C=N imine groups have the Z arrangements with respect to the chiral C—C sigma bond (C6—C11 or C22—C27) in the cyclohexanediamine, and the Schiff base molecule are non-coplanar due to chirality of the cyclohexanediamine moiety.

Experimental

1R,2R-Diaminocyclohexane (0.115 g, 1.00 mmol) was added slowly, whilst stirring, to a methanol (15 ml) solution with acetylacetone (0.2 g, 2.00 mmol), and the mixture was heated at reflux for 2 h. After cooling, and the solvent was removed under reduced pressure. The crude product was purified by column chromatography over silica gel using 20% EtOAc-hexane to afford pure yellow crystals of N,N'-bis-acetylacetone-1R,2R-dDiaminocyclohexane and dried in vacuum. Solid N-bromosuccimide (0.088 g, 0.5 mmol) was added slowly, whilst stirring, to a solution of the compound 1 (0.14 g, 0.5 mmol) in ethanol (20 ml). Stirring the solution for 2 h, and then the solvent was removed under reduced pressure. The crude product was purified by column chromatography over silica gel using 35% EtOAc-CH2Cl2 to afford pure pale yellow crystals of 2 and dried in vacuum, 0.1 g (yield 46%). Single crystals suitable for X-ray diffraction were obtained from an ethanol-CH2Cl2 mixture by slow evaporation at room temperature.

Refinement

All H atoms were placed in calculated positions and refined as riding, with C—H = 0.96-0.98 Å, N—H = 0.86 Å, and Uiso(H) = 1.2–1.5Ueq(C,N).

Figures

Fig. 1.
The molecular structure of (II) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate hydrogen bonds.
Fig. 2.
Packing diagram of (II), viewed in the ab plane, with the C—H···O interactions shown as dashed lines.

Crystal data

C16H24Br2N2O2F(000) = 880
Mr = 436.19Dx = 1.555 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 5587 reflections
a = 9.249 (5) Åθ = 1.0–25.0°
b = 9.350 (6) ŵ = 4.36 mm1
c = 21.82 (2) ÅT = 298 K
β = 99.122 (13)°Prism, colourless
V = 1863 (3) Å30.21 × 0.18 × 0.16 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer3433 independent reflections
Radiation source: fine-focus sealed tube1894 reflections with I > 2σ(I)
graphiteRint = 0.055
[var phi] and ω scanθmax = 25.0°, θmin = 1.0°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −10→10
Tmin = 0.461, Tmax = 0.542k = −9→10
12101 measured reflectionsl = −25→25

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 0.97w = 1/[σ2(Fo2) + (0.0413P)2] where P = (Fo2 + 2Fc2)/3
3433 reflections(Δ/σ)max < 0.001
405 parametersΔρmax = 0.38 e Å3
1 restraintΔρmin = −0.42 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.1762 (11)0.3858 (14)0.3222 (5)0.102 (4)
H1A0.24970.33460.30450.153*
H1B0.14680.46890.29750.153*
H1C0.09290.32500.32300.153*
C160.1713 (12)0.9661 (18)0.3226 (5)0.131 (5)
H16A0.07350.98790.30290.197*
H16B0.20990.88960.30070.197*
H16C0.23191.04930.32210.197*
C170.5609 (13)0.7298 (16)0.1865 (4)0.115 (4)
H17A0.47250.76890.19750.172*
H17B0.64400.77040.21270.172*
H17C0.56120.62790.19190.172*
C321.1245 (13)0.7174 (16)0.1748 (4)0.122 (5)
H32A1.21050.77380.17320.183*
H32B1.15220.62770.19470.183*
H32C1.06040.76770.19790.183*
C20.2376 (11)0.4310 (12)0.3872 (4)0.069 (3)
C30.3634 (9)0.5293 (10)0.4000 (4)0.055 (2)
C40.4082 (8)0.5911 (10)0.4549 (4)0.046 (2)
C50.5318 (9)0.6972 (11)0.4656 (4)0.070 (3)
H5A0.49260.79220.46620.106*
H5B0.58950.68960.43290.106*
H5C0.59220.67760.50470.106*
C60.3513 (9)0.6388 (10)0.5616 (3)0.052 (2)
H60.42540.71390.56190.062*
C70.3927 (9)0.5475 (11)0.6202 (4)0.070 (3)
H7A0.32070.47220.62090.083*
H7B0.48720.50290.61960.083*
C80.3994 (10)0.6376 (11)0.6772 (4)0.071 (3)
H8A0.47790.70670.67820.085*
H8B0.42200.57710.71360.085*
C90.2550 (10)0.7176 (12)0.6800 (4)0.077 (3)
H9A0.26730.78070.71570.092*
H9B0.17850.64930.68470.092*
C100.2096 (10)0.8057 (11)0.6204 (4)0.072 (3)
H10A0.11510.84990.62150.086*
H10B0.28050.88130.61830.086*
C110.2002 (8)0.7125 (9)0.5630 (3)0.043 (2)
H110.12570.63860.56460.052*
C12−0.0578 (9)0.6500 (11)0.4709 (4)0.078 (3)
H12A−0.13180.64110.43490.117*
H12B−0.10190.68170.50550.117*
H12C−0.01190.55890.48040.117*
C130.0560 (8)0.7578 (10)0.4581 (4)0.049 (2)
C140.0573 (9)0.8253 (10)0.4022 (4)0.057 (2)
C150.1691 (11)0.9218 (11)0.3882 (5)0.067 (3)
C180.5690 (10)0.7649 (12)0.1194 (4)0.065 (3)
C190.6550 (9)0.8842 (10)0.1036 (4)0.051 (2)
C200.6869 (9)0.9063 (9)0.0454 (4)0.048 (2)
C210.7836 (10)1.0251 (10)0.0312 (4)0.069 (3)
H21A0.88361.00230.04740.103*
H21B0.75631.11180.05010.103*
H21C0.77311.0379−0.01290.103*
C220.6848 (8)0.8009 (8)−0.0591 (4)0.042 (2)
H220.76210.8716−0.06110.051*
C230.5697 (10)0.8218 (10)−0.1152 (4)0.066 (3)
H23A0.52990.9176−0.11460.079*
H23B0.49050.7545−0.11380.079*
C240.6317 (11)0.8001 (12)−0.1745 (4)0.077 (3)
H24A0.55370.8106−0.20960.093*
H24B0.70420.8735−0.17770.093*
C250.7009 (12)0.6564 (15)−0.1775 (4)0.100 (4)
H25A0.74740.6501−0.21430.120*
H25B0.62680.5824−0.17990.120*
C260.8189 (10)0.6342 (11)−0.1174 (4)0.069 (3)
H26A0.85970.5387−0.11790.083*
H26B0.89800.7021−0.11770.083*
C270.7536 (9)0.6538 (9)−0.0592 (4)0.053 (2)
H270.67710.5817−0.05830.064*
C280.7431 (10)0.4321 (10)0.0342 (5)0.069 (3)
H28A0.64760.46930.03700.104*
H28B0.76920.36120.06590.104*
H28C0.74230.3894−0.00580.104*
C290.8524 (8)0.5509 (9)0.0430 (4)0.048 (2)
C300.9422 (9)0.5755 (10)0.0989 (4)0.057 (2)
C311.0469 (10)0.6904 (13)0.1100 (5)0.071 (3)
N10.3468 (6)0.5565 (7)0.5046 (3)0.0480 (18)
H10.29960.47700.50260.058*
N20.1623 (6)0.7941 (8)0.5063 (3)0.0534 (18)
H20.21050.87150.50280.064*
N30.6301 (6)0.8226 (7)−0.0014 (3)0.0495 (18)
H30.55220.77610.00320.059*
N40.8647 (6)0.6349 (7)−0.0047 (3)0.0509 (19)
H40.94500.6820−0.00340.061*
O10.1794 (7)0.3886 (7)0.4302 (3)0.0709 (18)
O20.2644 (7)0.9658 (7)0.4308 (3)0.0779 (19)
O30.5019 (7)0.6859 (8)0.0789 (3)0.085 (2)
O41.0671 (6)0.7704 (8)0.0690 (3)0.081 (2)
Br10.44737 (12)0.58781 (14)0.32986 (5)0.0905 (4)
Br2−0.08805 (11)0.76970 (15)0.33409 (5)0.0971 (4)
Br30.74344 (13)1.00453 (13)0.17037 (5)0.0946 (4)
Br40.91939 (13)0.45712 (13)0.16842 (5)0.0993 (5)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.082 (8)0.137 (11)0.085 (8)0.005 (7)0.008 (6)−0.040 (8)
C160.119 (10)0.208 (16)0.064 (8)−0.021 (11)0.011 (7)0.071 (9)
C170.160 (11)0.127 (11)0.067 (7)−0.012 (9)0.050 (7)0.005 (8)
C320.131 (9)0.147 (13)0.074 (8)0.010 (9)−0.029 (7)−0.006 (9)
C20.074 (7)0.091 (8)0.043 (6)0.012 (6)0.017 (5)−0.001 (6)
C30.054 (5)0.066 (7)0.046 (6)0.009 (5)0.015 (4)0.003 (5)
C40.042 (5)0.048 (5)0.050 (5)0.007 (5)0.013 (4)0.003 (5)
C50.059 (6)0.069 (7)0.086 (7)−0.004 (5)0.022 (5)−0.012 (6)
C60.064 (6)0.069 (7)0.024 (4)−0.001 (5)0.012 (4)0.001 (4)
C70.071 (6)0.091 (9)0.046 (6)0.022 (6)0.007 (4)0.012 (6)
C80.081 (7)0.087 (8)0.042 (6)0.017 (6)0.000 (5)0.011 (5)
C90.103 (7)0.091 (8)0.037 (5)0.016 (7)0.011 (5)−0.001 (5)
C100.083 (6)0.082 (8)0.050 (6)0.007 (6)0.010 (5)−0.007 (6)
C110.051 (5)0.051 (5)0.028 (4)−0.002 (4)0.006 (4)0.001 (4)
C120.061 (6)0.086 (9)0.085 (8)−0.017 (6)0.007 (5)−0.011 (6)
C130.050 (5)0.044 (6)0.052 (6)0.002 (5)0.009 (4)−0.005 (5)
C140.049 (5)0.066 (7)0.052 (6)0.003 (5)−0.002 (4)−0.013 (5)
C150.076 (7)0.061 (7)0.065 (7)0.006 (6)0.017 (6)0.004 (6)
C180.082 (6)0.067 (7)0.049 (6)0.023 (7)0.018 (5)0.002 (6)
C190.053 (5)0.053 (6)0.047 (6)−0.010 (5)0.008 (4)−0.011 (5)
C200.052 (5)0.039 (6)0.052 (6)0.007 (4)0.008 (5)−0.002 (5)
C210.093 (7)0.060 (7)0.056 (6)−0.015 (6)0.018 (5)−0.008 (5)
C220.051 (5)0.036 (6)0.039 (5)−0.006 (4)0.004 (4)−0.003 (4)
C230.092 (7)0.064 (7)0.039 (5)0.015 (5)0.001 (5)0.001 (5)
C240.104 (7)0.089 (8)0.034 (6)0.034 (7)−0.003 (5)0.011 (5)
C250.120 (9)0.144 (12)0.034 (6)0.042 (8)0.001 (6)−0.024 (6)
C260.087 (7)0.079 (8)0.041 (5)0.016 (5)0.008 (5)−0.002 (5)
C270.049 (5)0.060 (7)0.050 (6)−0.008 (4)0.005 (4)−0.006 (5)
C280.079 (7)0.051 (7)0.075 (7)−0.008 (5)0.006 (5)0.018 (6)
C290.049 (5)0.051 (7)0.044 (5)0.010 (5)0.010 (4)0.002 (5)
C300.064 (5)0.052 (6)0.053 (6)0.006 (5)0.005 (5)0.003 (5)
C310.069 (7)0.063 (8)0.076 (8)0.001 (6)0.000 (6)−0.003 (7)
N10.052 (4)0.048 (5)0.045 (4)−0.013 (3)0.012 (3)−0.004 (4)
N20.058 (4)0.058 (5)0.041 (4)−0.007 (4)−0.002 (3)0.003 (4)
N30.047 (4)0.056 (5)0.046 (4)−0.012 (3)0.009 (3)−0.012 (4)
N40.039 (4)0.058 (5)0.054 (5)−0.007 (3)0.003 (3)0.008 (4)
O10.084 (4)0.077 (5)0.053 (4)−0.013 (4)0.015 (4)−0.009 (4)
O20.084 (5)0.084 (5)0.065 (4)−0.019 (4)0.009 (4)0.013 (4)
O30.101 (5)0.091 (6)0.068 (5)−0.035 (4)0.033 (4)−0.007 (4)
O40.070 (4)0.075 (5)0.093 (5)−0.015 (4)−0.002 (4)0.011 (5)
Br10.1002 (8)0.1210 (10)0.0566 (7)0.0003 (8)0.0317 (6)0.0100 (7)
Br20.0836 (7)0.1347 (11)0.0628 (7)0.0004 (8)−0.0196 (5)−0.0041 (8)
Br30.1140 (9)0.1142 (10)0.0531 (6)−0.0114 (8)0.0055 (6)−0.0306 (7)
Br40.1200 (10)0.1090 (11)0.0666 (8)0.0057 (8)0.0076 (6)0.0326 (7)

Geometric parameters (Å, °)

C1—C21.503 (13)C12—H12C0.9600
C1—H1A0.9600C13—N21.364 (9)
C1—H1B0.9600C13—C141.376 (11)
C1—H1C0.9600C14—C151.442 (13)
C16—C151.492 (13)C14—Br21.911 (8)
C16—H16A0.9600C15—O21.246 (11)
C16—H16B0.9600C18—O31.240 (11)
C16—H16C0.9600C18—C191.444 (14)
C17—C181.513 (12)C19—C201.365 (11)
C17—H17A0.9600C19—Br31.917 (8)
C17—H17B0.9600C20—N31.327 (10)
C17—H17C0.9600C20—C211.489 (12)
C32—C311.501 (12)C21—H21A0.9600
C32—H32A0.9600C21—H21B0.9600
C32—H32B0.9600C21—H21C0.9600
C32—H32C0.9600C22—N31.445 (10)
C2—O11.220 (10)C22—C231.502 (10)
C2—C31.474 (13)C22—C271.515 (11)
C3—C41.335 (11)C22—H220.9800
C3—Br11.903 (8)C23—C241.510 (12)
C4—N11.341 (9)C23—H23A0.9700
C4—C51.504 (12)C23—H23B0.9700
C5—H5A0.9600C24—C251.494 (14)
C5—H5B0.9600C24—H24A0.9700
C5—H5C0.9600C24—H24B0.9700
C6—N11.457 (9)C25—C261.581 (11)
C6—C71.536 (11)C25—H25A0.9700
C6—C111.564 (10)C25—H25B0.9700
C6—H60.9800C26—C271.502 (10)
C7—C81.495 (11)C26—H26A0.9700
C7—H7A0.9700C26—H26B0.9700
C7—H7B0.9700C27—N41.453 (9)
C8—C91.541 (12)C27—H270.9800
C8—H8A0.9700C28—C291.494 (12)
C8—H8B0.9700C28—H28A0.9600
C9—C101.541 (11)C28—H28B0.9600
C9—H9A0.9700C28—H28C0.9600
C9—H9B0.9700C29—N41.324 (9)
C10—C111.516 (11)C29—C301.381 (11)
C10—H10A0.9700C30—C311.441 (14)
C10—H10B0.9700C30—Br41.916 (9)
C11—N21.448 (9)C31—O41.204 (11)
C11—H110.9800N1—H10.8600
C12—C131.515 (12)N2—H20.8600
C12—H12A0.9600N3—H30.8600
C12—H12B0.9600N4—H40.8600
C2—C1—H1A109.5C13—C14—C15125.7 (8)
C2—C1—H1B109.5C13—C14—Br2117.4 (7)
H1A—C1—H1B109.5C15—C14—Br2116.4 (7)
C2—C1—H1C109.5O2—C15—C14119.6 (9)
H1A—C1—H1C109.5O2—C15—C16120.6 (10)
H1B—C1—H1C109.5C14—C15—C16119.8 (10)
C15—C16—H16A109.5O3—C18—C19121.5 (8)
C15—C16—H16B109.5O3—C18—C17117.7 (11)
H16A—C16—H16B109.5C19—C18—C17120.8 (10)
C15—C16—H16C109.5C20—C19—C18123.2 (8)
H16A—C16—H16C109.5C20—C19—Br3119.3 (7)
H16B—C16—H16C109.5C18—C19—Br3117.2 (7)
C18—C17—H17A109.5N3—C20—C19120.6 (8)
C18—C17—H17B109.5N3—C20—C21117.3 (8)
H17A—C17—H17B109.5C19—C20—C21122.1 (8)
C18—C17—H17C109.5C20—C21—H21A109.5
H17A—C17—H17C109.5C20—C21—H21B109.5
H17B—C17—H17C109.5H21A—C21—H21B109.5
C31—C32—H32A109.5C20—C21—H21C109.5
C31—C32—H32B109.5H21A—C21—H21C109.5
H32A—C32—H32B109.5H21B—C21—H21C109.5
C31—C32—H32C109.5N3—C22—C23113.0 (7)
H32A—C32—H32C109.5N3—C22—C27109.5 (7)
H32B—C32—H32C109.5C23—C22—C27111.1 (7)
O1—C2—C3119.2 (8)N3—C22—H22107.7
O1—C2—C1119.2 (10)C23—C22—H22107.7
C3—C2—C1121.5 (9)C27—C22—H22107.7
C4—C3—C2124.3 (8)C22—C23—C24111.4 (7)
C4—C3—Br1119.3 (7)C22—C23—H23A109.4
C2—C3—Br1116.0 (7)C24—C23—H23A109.4
C3—C4—N1120.7 (8)C22—C23—H23B109.4
C3—C4—C5123.1 (8)C24—C23—H23B109.3
N1—C4—C5116.2 (7)H23A—C23—H23B108.0
C4—C5—H5A109.5C25—C24—C23112.4 (8)
C4—C5—H5B109.5C25—C24—H24A109.1
H5A—C5—H5B109.5C23—C24—H24A109.1
C4—C5—H5C109.5C25—C24—H24B109.1
H5A—C5—H5C109.5C23—C24—H24B109.1
H5B—C5—H5C109.5H24A—C24—H24B107.8
N1—C6—C7112.8 (7)C24—C25—C26109.0 (8)
N1—C6—C11110.2 (6)C24—C25—H25A109.9
C7—C6—C11109.5 (6)C26—C25—H25A109.9
N1—C6—H6108.1C24—C25—H25B109.9
C7—C6—H6108.1C26—C25—H25B109.9
C11—C6—H6108.1H25A—C25—H25B108.3
C8—C7—C6110.6 (8)C27—C26—C25111.6 (7)
C8—C7—H7A109.5C27—C26—H26A109.3
C6—C7—H7A109.5C25—C26—H26A109.3
C8—C7—H7B109.5C27—C26—H26B109.3
C6—C7—H7B109.5C25—C26—H26B109.3
H7A—C7—H7B108.1H26A—C26—H26B108.0
C7—C8—C9112.6 (7)N4—C27—C26110.5 (7)
C7—C8—H8A109.1N4—C27—C22110.6 (7)
C9—C8—H8A109.1C26—C27—C22109.7 (8)
C7—C8—H8B109.1N4—C27—H27108.7
C9—C8—H8B109.1C26—C27—H27108.7
H8A—C8—H8B107.8C22—C27—H27108.7
C8—C9—C10110.3 (7)C29—C28—H28A109.5
C8—C9—H9A109.6C29—C28—H28B109.5
C10—C9—H9A109.6H28A—C28—H28B109.5
C8—C9—H9B109.6C29—C28—H28C109.5
C10—C9—H9B109.6H28A—C28—H28C109.5
H9A—C9—H9B108.1H28B—C28—H28C109.5
C11—C10—C9111.2 (8)N4—C29—C30118.8 (8)
C11—C10—H10A109.4N4—C29—C28118.7 (7)
C9—C10—H10A109.4C30—C29—C28122.5 (8)
C11—C10—H10B109.4C29—C30—C31124.5 (9)
C9—C10—H10B109.4C29—C30—Br4118.5 (7)
H10A—C10—H10B108.0C31—C30—Br4116.9 (7)
N2—C11—C10112.1 (7)O4—C31—C30121.2 (9)
N2—C11—C6108.1 (6)O4—C31—C32119.2 (11)
C10—C11—C6109.6 (6)C30—C31—C32119.5 (11)
N2—C11—H11109.0C4—N1—C6127.2 (7)
C10—C11—H11109.0C4—N1—H1116.4
C6—C11—H11109.0C6—N1—H1116.4
C13—C12—H12A109.5C13—N2—C11125.1 (7)
C13—C12—H12B109.5C13—N2—H2117.5
H12A—C12—H12B109.5C11—N2—H2117.5
C13—C12—H12C109.5C20—N3—C22127.1 (7)
H12A—C12—H12C109.5C20—N3—H3116.5
H12B—C12—H12C109.5C22—N3—H3116.5
N2—C13—C14117.6 (8)C29—N4—C27125.3 (7)
N2—C13—C12117.4 (8)C29—N4—H4117.3
C14—C13—C12124.9 (8)C27—N4—H4117.3
O1—C2—C3—C4−9.1 (14)N3—C22—C23—C24179.2 (8)
C1—C2—C3—C4168.9 (9)C27—C22—C23—C24−57.2 (10)
O1—C2—C3—Br1179.5 (7)C22—C23—C24—C2556.6 (12)
C1—C2—C3—Br1−2.6 (12)C23—C24—C25—C26−54.1 (12)
C2—C3—C4—N16.0 (13)C24—C25—C26—C2755.3 (12)
Br1—C3—C4—N1177.2 (6)C25—C26—C27—N4−179.2 (8)
C2—C3—C4—C5−176.5 (8)C25—C26—C27—C22−57.0 (11)
Br1—C3—C4—C5−5.3 (11)N3—C22—C27—N4−54.4 (8)
N1—C6—C7—C8178.6 (7)C23—C22—C27—N4180.0 (7)
C11—C6—C7—C8−58.3 (10)N3—C22—C27—C26−176.5 (6)
C6—C7—C8—C956.6 (11)C23—C22—C27—C2657.9 (9)
C7—C8—C9—C10−54.3 (11)N4—C29—C30—C312.1 (12)
C8—C9—C10—C1155.0 (10)C28—C29—C30—C31−178.6 (8)
C9—C10—C11—N2−178.1 (7)N4—C29—C30—Br4178.1 (6)
C9—C10—C11—C6−58.0 (9)C28—C29—C30—Br4−2.5 (11)
N1—C6—C11—N2−53.7 (9)C29—C30—C31—O4−3.4 (15)
C7—C6—C11—N2−178.3 (7)Br4—C30—C31—O4−179.5 (8)
N1—C6—C11—C10−176.2 (7)C29—C30—C31—C32172.3 (9)
C7—C6—C11—C1059.2 (10)Br4—C30—C31—C32−3.8 (12)
N2—C13—C14—C156.2 (13)C3—C4—N1—C6−161.2 (8)
C12—C13—C14—C15−176.2 (8)C5—C4—N1—C621.2 (11)
N2—C13—C14—Br2178.1 (6)C7—C6—N1—C4−132.1 (8)
C12—C13—C14—Br2−4.3 (11)C11—C6—N1—C4105.2 (8)
C13—C14—C15—O2−10.3 (14)C14—C13—N2—C11−164.3 (7)
Br2—C14—C15—O2177.7 (7)C12—C13—N2—C1117.9 (11)
C13—C14—C15—C16168.6 (10)C10—C11—N2—C13−131.6 (8)
Br2—C14—C15—C16−3.4 (12)C6—C11—N2—C13107.4 (8)
O3—C18—C19—C20−10.1 (14)C19—C20—N3—C22−159.0 (8)
C17—C18—C19—C20168.3 (9)C21—C20—N3—C2222.0 (12)
O3—C18—C19—Br3176.3 (7)C23—C22—N3—C20−128.5 (8)
C17—C18—C19—Br3−5.2 (12)C27—C22—N3—C20107.0 (8)
C18—C19—C20—N34.9 (13)C30—C29—N4—C27−159.8 (8)
Br3—C19—C20—N3178.4 (6)C28—C29—N4—C2720.9 (12)
C18—C19—C20—C21−176.1 (8)C26—C27—N4—C29−129.6 (8)
Br3—C19—C20—C21−2.6 (11)C22—C27—N4—C29108.7 (9)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O10.861.962.588 (8)129
N2—H2···O20.861.932.584 (9)131
N3—H3···O30.861.982.602 (9)129
N4—H4···O40.861.972.596 (9)129
C5—H5C···O2i0.962.663.463 (12)142
C12—H12B···O1ii0.962.563.416 (12)149
C23—H23A···O3iii0.972.663.581 (12)159
C28—H28C···O4iv0.962.653.419 (13)138

Symmetry codes: (i) −x+1, y−1/2, −z+1; (ii) −x, y+1/2, −z+1; (iii) −x+1, y+1/2, −z; (iv) −x+2, y−1/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2694).

References

  • Bottcher, A., Takeuchi, T., Hardcastle, K. I., Meade, T. J. & Gray, H. B. (1997). Inorg. Chem.36, 2498–2504.
  • Bruker, (2005). APEX2, SAINT and SADABS Bruker AXS, Inc., Madison, Wisconsin, USA.
  • Bu, X. R., Jackson, C. R., Derveer, D. V., You, X. Z., Meng, Q. J. & Wang, R. X. (1997). Polyhedron, 16, 2991–3001.
  • Chimpalee, N., Chimpalee, D., Keawpasert, P. & Burns, D. T. (2000). Anal. Chim. Acta, 408, 123–125.
  • Dominiak, P. M., Grech, E., Barr, G., Teat, S., Mallinson, P. & Wozniak, K. (2003). Chem. Eur. J.9, 963–970. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Gilli, G., Bellucci, F., Ferretti, V. & Bertolasi, V. (1989). J. Am. Chem. Soc.111, 1023–1028.
  • McCann, M., Townsend, S., Devereux, M., McKee, V. & Walker, B. (2001). Polyhedron, 20, 2799–2806.
  • Na, H. G., Lee, J. W., Choi, J. H., Byun, J. C. & Park, Y. C. (2002). Polyhedron, 21, 917–920.
  • Ozkar, S., Ulku, D., Yildirim, L. T., Biricik, N. & Gumgum, B. (2004). J. Mol. Struct.688, 207–211.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tacke, R., Bertermann, R., Penka, M. & Seiler, O. (2003). Z. Anorg. Allg. Chem.629, 2415–2420.
  • Zhang, Y. L., Ruan, W. J., Li, Y., Nan, J. & Zhu, Z. A. (2003). Acta Chem. Sin.61, 186–191.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography