PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 January 1; 65(Pt 1): o200.
Published online 2008 December 24. doi:  10.1107/S1600536808043158
PMCID: PMC2968106

4,4,5,5-Tetramethyl-2-(4-pyridinio)imidazoline-1-oxyl-3-oxide chloride

Abstract

The title compound C12H17N3O2 +·Cl consists of a discrete [NITpPyH]+ cation [NITpPy = 2-(4′-pyrid­yl)-4,4,5,5-tetra­methyl­imidazoline-1-oxyl-3-oxide] and a chloride anion. The NITpPy mol­ecule is protonated at the N atom of the pyridyl ring. The anions and cations are connected via N—H(...)Cl hydrogen bonds.

Related literature

For the design and synthesis of mol­ecule-based magnetic materials, see: Bogani et al. (2005 [triangle]); Wang et al. (2004 [triangle]). For nitronyl nitroxide radicals (NITR), see: Fettouhi et al. (2003 [triangle]). For related literature, see: Stroh et al. (1999 [triangle]); Hirel et al. (2001 [triangle]); Chang et al. (2005 [triangle]); Wang et al. (2003 [triangle]). For the synthesis of the title compound see: Ullman et al. (1970 [triangle], 1972 [triangle])

An external file that holds a picture, illustration, etc.
Object name is e-65-0o200-scheme1.jpg

Experimental

Crystal data

  • C12H17N3O2 +·Cl
  • M r = 270.74
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o200-efi1.jpg
  • a = 10.863 (14) Å
  • b = 11.927 (15) Å
  • c = 11.130 (15) Å
  • β = 102.81 (2)°
  • V = 1406 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.27 mm−1
  • T = 291 (2) K
  • 0.30 × 0.26 × 0.23 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.923, T max = 0.939
  • 7172 measured reflections
  • 2609 independent reflections
  • 2120 reflections with I > 2σ(I)
  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048
  • wR(F 2) = 0.140
  • S = 1.03
  • 2609 reflections
  • 167 parameters
  • H-atom parameters constrained
  • Δρmax = 0.44 e Å−3
  • Δρmin = −0.22 e Å−3

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT (Bruker, 2002 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, New_Global_Publ_Block. DOI: 10.1107/S1600536808043158/bx2189sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808043158/bx2189Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 20471026) and the Natural Science Foundation of Henan Province (No. 0311021200).

supplementary crystallographic information

Comment

The design and synthesis of molecule-based magnetic materials is one of the major subjects of materials science in which the combination of metal ions and organic radicals are used to construct assembled systems (Bogani et al., 2005; Wang et al., 2004). Nitronyl nitroxide radicals (NITR), independently or in combination with metal ions, have been one of the most widely studied systems in molecular magnetism for understanding the radical-radical or metal-radical as well as for synthesizing organic ferromagnets and metal-radical magnetic materials (Fettouhi et al., 2003). However, to our knowledge so far few charge transfer complexes of nitronyl nitroxide radicals used as proton receptor have been reported. In order to better understand the behavior of proton transfer in charge transfer complexes, the synthesis and crystal structure of the title compound have been investigated. The structure of the title compound is shown in Fig. 1. The NITpPy molecule is protonated at N atom of the pyridyl ring by accepting a proton from the acid solution. The transfer of protons result in a intermolecular hydrogen bond between NITpPy and chloride.The anions and cations are connected via N—H···Cl hydrogen bonds. The nitronyl nitroxide fragment O—N—C—N—O is almost coplanar, but make a dihedral angle of 8.6 (2)° with the pyridyl ring.

Experimental

NITpPy was synthesized according to a literature procedure (Ullman et al.,1970; Ullman et al., 1972). Single crystals of the title compound suitable for X-ray measurements were obtained by recrystallization from acetonitrile solution and HCl 10:1 (v/v) solution at room temperature.

Refinement

The H atoms were positioned geometrically and refined using the riding-model approximation, with C—H = 0.93 or 0.96 Å and N—H = 0.96 Å and Uiso(H) = 1.2Ueq(carrier) or Uiso(H) = 1.5Ueq(methyl carrier).

Figures

Fig. 1.
ORTEP drawing of the title compound with atom labeling. The thermal ellipsoids are drawn at 30% probability level.

Crystal data

C12H17N3O2+·ClF(000) = 572
Mr = 270.74Dx = 1.279 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3005 reflections
a = 10.863 (14) Åθ = 2.5–27.3°
b = 11.927 (15) ŵ = 0.27 mm1
c = 11.130 (15) ÅT = 291 K
β = 102.81 (2)°BLOCK, black
V = 1406 (3) Å30.30 × 0.26 × 0.23 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer2609 independent reflections
Radiation source: fine-focus sealed tube2120 reflections with I > 2σ(I)
graphiteRint = 0.037
phi and ω scansθmax = 25.5°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −13→11
Tmin = 0.923, Tmax = 0.939k = −13→14
7172 measured reflectionsl = −13→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.0696P)2 + 0.6783P] where P = (Fo2 + 2Fc2)/3
2609 reflections(Δ/σ)max = 0.001
167 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = −0.22 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)are estimated using the full covariance matrix. The cell e.s.d.'s are takeninto account individually in the estimation of e.s.d.'s in distances, anglesand torsion angles; correlations between e.s.d.'s in cell parameters are onlyused when they are defined by crystal symmetry. An approximate (isotropic)treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR andgoodness of fit S are based on F2, conventional R-factors R are basedon F, with F set to zero for negative F2. The threshold expression ofF2 > σ(F2) is used only for calculating R-factors(gt) etc. and isnot relevant to the choice of reflections for refinement. R-factors basedon F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.05896 (6)0.43910 (4)0.31130 (6)0.0548 (2)
O10.64998 (19)1.16127 (15)0.74894 (19)0.0700 (6)
O20.78794 (19)0.86362 (13)0.53807 (17)0.0633 (5)
N10.92752 (17)1.26424 (15)0.43535 (17)0.0452 (5)
H1D0.96871.31010.39920.054*
N20.67191 (18)1.06169 (14)0.71219 (17)0.0425 (4)
N30.73993 (17)0.92068 (14)0.61433 (16)0.0395 (4)
C10.8082 (2)1.23103 (17)0.5864 (2)0.0437 (5)
H10.77001.25860.64730.052*
C20.8735 (2)1.30278 (18)0.5247 (2)0.0479 (6)
H20.87991.37840.54540.057*
C30.9190 (2)1.15584 (18)0.4007 (2)0.0437 (5)
H30.95621.13210.33750.052*
C40.8550 (2)1.07904 (17)0.45867 (19)0.0391 (5)
H40.84841.00450.43360.047*
C50.80009 (18)1.11518 (16)0.55597 (18)0.0343 (4)
C60.73824 (19)1.03513 (16)0.62469 (18)0.0348 (5)
C70.6107 (2)0.95916 (19)0.7557 (2)0.0446 (5)
C80.6900 (2)0.86274 (18)0.7158 (2)0.0479 (6)
C90.6147 (3)0.9682 (3)0.8936 (3)0.0755 (9)
H9A0.70090.96990.93870.113*
H9B0.57270.90470.91930.113*
H9C0.57291.03580.90930.113*
C100.4731 (3)0.9600 (3)0.6823 (3)0.0760 (9)
H10A0.43361.02900.69720.114*
H10B0.42850.89810.70780.114*
H10C0.47130.95330.59590.114*
C110.8094 (3)0.8328 (3)0.8176 (3)0.0673 (8)
H11A0.86300.78360.78370.101*
H11B0.78390.79620.88490.101*
H11C0.85460.90020.84650.101*
C120.6206 (4)0.7561 (2)0.6664 (3)0.0855 (11)
H12A0.55720.77310.59380.128*
H12B0.58140.72450.72790.128*
H12C0.67950.70310.64620.128*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0756 (5)0.0354 (3)0.0595 (4)−0.0077 (2)0.0278 (3)0.0030 (2)
O10.0900 (14)0.0420 (9)0.0963 (15)0.0035 (9)0.0597 (12)−0.0127 (9)
O20.0960 (14)0.0354 (8)0.0746 (12)−0.0055 (8)0.0536 (11)−0.0104 (8)
N10.0455 (11)0.0403 (10)0.0500 (11)−0.0080 (8)0.0114 (9)0.0098 (8)
N20.0454 (11)0.0370 (9)0.0502 (11)0.0003 (7)0.0215 (9)−0.0023 (7)
N30.0471 (11)0.0319 (8)0.0438 (10)−0.0033 (7)0.0197 (8)−0.0025 (7)
C10.0529 (14)0.0357 (11)0.0439 (12)−0.0023 (9)0.0134 (10)−0.0043 (9)
C20.0575 (15)0.0315 (10)0.0526 (14)−0.0059 (9)0.0082 (11)−0.0007 (9)
C30.0432 (13)0.0431 (11)0.0476 (12)0.0019 (9)0.0159 (10)0.0056 (9)
C40.0428 (12)0.0329 (10)0.0439 (12)−0.0007 (8)0.0142 (10)0.0002 (8)
C50.0331 (11)0.0316 (9)0.0378 (11)−0.0006 (8)0.0065 (8)0.0010 (8)
C60.0356 (11)0.0329 (10)0.0377 (11)−0.0004 (8)0.0115 (9)−0.0010 (8)
C70.0433 (13)0.0459 (12)0.0495 (13)−0.0048 (9)0.0206 (10)0.0017 (9)
C80.0563 (14)0.0375 (11)0.0575 (14)−0.0053 (10)0.0288 (12)0.0041 (9)
C90.102 (3)0.0758 (19)0.0605 (17)0.0035 (17)0.0428 (17)0.0043 (14)
C100.0460 (16)0.080 (2)0.102 (3)−0.0054 (14)0.0163 (16)0.0114 (17)
C110.0678 (18)0.0642 (16)0.0743 (18)0.0131 (13)0.0250 (15)0.0262 (14)
C120.103 (3)0.0554 (16)0.116 (3)−0.0362 (17)0.064 (2)−0.0199 (17)

Geometric parameters (Å, °)

O1—N21.295 (3)C7—C91.529 (4)
O2—N31.285 (2)C7—C101.536 (4)
N1—C21.343 (3)C7—C81.559 (3)
N1—C31.346 (3)C8—C121.518 (4)
N1—H1D0.8600C8—C111.563 (4)
N2—C61.371 (3)C9—H9A0.9600
N2—C71.522 (3)C9—H9B0.9600
N3—C61.370 (3)C9—H9C0.9600
N3—C81.523 (3)C10—H10A0.9600
C1—C21.387 (3)C10—H10B0.9600
C1—C51.421 (3)C10—H10C0.9600
C1—H10.9300C11—H11A0.9600
C2—H20.9300C11—H11B0.9600
C3—C41.392 (3)C11—H11C0.9600
C3—H30.9300C12—H12A0.9600
C4—C51.415 (3)C12—H12B0.9600
C4—H40.9300C12—H12C0.9600
C5—C61.475 (3)
C2—N1—C3121.81 (19)C10—C7—C8112.8 (2)
C2—N1—H1D119.1C12—C8—N3110.0 (2)
C3—N1—H1D119.1C12—C8—C7117.4 (2)
O1—N2—C6126.78 (18)N3—C8—C7100.76 (18)
O1—N2—C7120.83 (19)C12—C8—C11109.7 (3)
C6—N2—C7112.09 (17)N3—C8—C11105.4 (2)
O2—N3—C6126.73 (17)C7—C8—C11112.6 (2)
O2—N3—C8120.85 (18)C7—C9—H9A109.5
C6—N3—C8112.09 (17)C7—C9—H9B109.5
C2—C1—C5119.6 (2)H9A—C9—H9B109.5
C2—C1—H1120.2C7—C9—H9C109.5
C5—C1—H1120.2H9A—C9—H9C109.5
N1—C2—C1120.7 (2)H9B—C9—H9C109.5
N1—C2—H2119.6C7—C10—H10A109.5
C1—C2—H2119.6C7—C10—H10B109.5
N1—C3—C4120.6 (2)H10A—C10—H10B109.5
N1—C3—H3119.7C7—C10—H10C109.5
C4—C3—H3119.7H10A—C10—H10C109.5
C3—C4—C5119.5 (2)H10B—C10—H10C109.5
C3—C4—H4120.2C8—C11—H11A109.5
C5—C4—H4120.2C8—C11—H11B109.5
C4—C5—C1117.69 (18)H11A—C11—H11B109.5
C4—C5—C6121.17 (19)C8—C11—H11C109.5
C1—C5—C6121.13 (19)H11A—C11—H11C109.5
N3—C6—N2108.00 (17)H11B—C11—H11C109.5
N3—C6—C5125.80 (18)C8—C12—H12A109.5
N2—C6—C5126.18 (19)C8—C12—H12B109.5
N2—C7—C9110.2 (2)H12A—C12—H12B109.5
N2—C7—C10105.5 (2)C8—C12—H12C109.5
C9—C7—C10109.9 (2)H12A—C12—H12C109.5
N2—C7—C8101.19 (18)H12B—C12—H12C109.5
C9—C7—C8116.3 (2)
C3—N1—C2—C11.1 (3)C6—N2—C7—C9143.3 (2)
C5—C1—C2—N11.0 (3)O1—N2—C7—C1076.0 (3)
C2—N1—C3—C4−1.1 (3)C6—N2—C7—C10−98.1 (2)
N1—C3—C4—C5−0.9 (3)O1—N2—C7—C8−166.4 (2)
C3—C4—C5—C12.9 (3)C6—N2—C7—C819.6 (2)
C3—C4—C5—C6−176.24 (19)O2—N3—C8—C12−40.2 (3)
C2—C1—C5—C4−2.9 (3)C6—N3—C8—C12146.0 (2)
C2—C1—C5—C6176.2 (2)O2—N3—C8—C7−164.7 (2)
O2—N3—C6—N2176.6 (2)C6—N3—C8—C721.4 (2)
C8—N3—C6—N2−10.0 (2)O2—N3—C8—C1178.0 (3)
O2—N3—C6—C5−4.9 (3)C6—N3—C8—C11−95.8 (2)
C8—N3—C6—C5168.50 (19)N2—C7—C8—C12−141.9 (2)
O1—N2—C6—N3179.6 (2)C9—C7—C8—C1298.7 (3)
C7—N2—C6—N3−6.8 (2)C10—C7—C8—C12−29.7 (3)
O1—N2—C6—C51.1 (4)N2—C7—C8—N3−22.6 (2)
C7—N2—C6—C5174.72 (19)C9—C7—C8—N3−142.0 (2)
C4—C5—C6—N38.4 (3)C10—C7—C8—N389.7 (2)
C1—C5—C6—N3−170.7 (2)N2—C7—C8—C1189.3 (2)
C4—C5—C6—N2−173.4 (2)C9—C7—C8—C11−30.1 (3)
C1—C5—C6—N27.5 (3)C10—C7—C8—C11−158.4 (2)
O1—N2—C7—C9−42.7 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1D···Cl1i0.862.173.028 (3)174

Symmetry codes: (i) x+1, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2189).

References

  • Bogani, L., Sangregorio, C., Sessoli, R. & &Gatteschi, D. (2005). Angew. Chem. Int. Ed.44, 5817–5821. [PubMed]
  • Bruker (2002). SAINT and SMART Bruker AXS Inc., Madison, Winsonsin, USA.
  • Chang, J.-L., Wang, L.-Y. & Jiang, K. (2005). Acta Cryst. E61, m2100–m2102.
  • Fettouhi, M., Ali, B. E., Morsy, M., Golhen, S., Ouahab, L., Guennic, B. L., Saillard, J. Y., aro, N., Sutter, J. P. & Amouyal, E. (2003). Inorg. Chem.42, 1316–1321. [PubMed]
  • Hirel, C., Vostrikova, K. E., Pe’caut, J., Ovcharenko, V. I. & Rey, P. (2001). Chem. Eur. J.7, 2007–2013.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stroh, C., Romero, F. M., Kyritsakas, N., Catala, L., Turek, P. & Ziessel, R. (1999). J. Mater. Chem.9, 875–882.
  • Ullman, E. F., Call, L. & Osieckei, J. H. J. (1970). J. Org. Chem.35, 3623–3628.
  • Ullman, E. F., Osiecki, J. H., Boocock, D. G. B. & Darcy, R. (1972). J. Am. Chem. Soc.94, 7049–7059.
  • Wang, H. M., Liu, Z. L., Zhang, D. Q., Geng, H., Shuai, Z. G. & Zhu, D. B. (2004). Inorg. Chem.43, 4091–4098. [PubMed]
  • Wang, L. Y., Zhao, B., Zhang, C. X., Liao, D. Z., Jiang, Z. H. & Yan, S. P. (2003). Inorg. Chem.42, 5804–5806. [PubMed]
  • Westrip, S. P. (2009). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography