PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 January 1; 65(Pt 1): o198–o199.
Published online 2008 December 24. doi:  10.1107/S1600536808043262
PMCID: PMC2968105

(E,E)-Methyl 2-[(3-nitrobenzylidene)­aminomethyl]-3-phenylpropenoate

Abstract

The mol­ecule of the title compound, C18H16N2O4, adopts a T-shaped conformation with E stereochemistry for the imine double bond. The (3-nitro­benzyl­idene)amino fragment is almost planar, the mean planes of phenyl ring and nitro group forming a dihedral angle of 8.9 (3)°. In the 3-phenyl­acryloyl unit, the acrylic ester fragment is also almost planar, with the phenyl ring twisted by 41.44 (7)°. In the crystal, the mol­ecules are linked by C—H(...)O hydrogen-bond inter­actions into chains running parallel to [01An external file that holds a picture, illustration, etc.
Object name is e-65-0o198-efi1.jpg].

Related literature

For general background to the chemistry of Morita–Baylis–Hillman adducts, see: Singh & Batra (2008 [triangle]); Masson et al. (2007 [triangle]); Basavaiah et al. (2003 [triangle]). For background to this study, see: Bortoluzzi et al. (2006 [triangle]); Fernandes et al. (2004 [triangle]); Sá et al. (2006 [triangle], 2007 [triangle], 2008 [triangle]). For the synthesis, see: Sá (2003 [triangle]). For a description of the Cambridge Structural Database, see: Allen (2002 [triangle]); and of MOGUL, see: Bruno et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o198-scheme1.jpg

Experimental

Crystal data

  • C18H16N2O4
  • M r = 324.33
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o198-efi3.jpg
  • a = 8.6035 (12) Å
  • b = 8.7829 (14) Å
  • c = 12.4680 (14) Å
  • α = 79.275 (18)°
  • β = 76.526 (13)°
  • γ = 63.158 (14)°
  • V = 813.9 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 293 (2) K
  • 0.50 × 0.30 × 0.20 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: none
  • 3026 measured reflections
  • 2883 independent reflections
  • 2165 reflections with > 2σ (I)
  • R int = 0.024
  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.124
  • S = 1.09
  • 2883 reflections
  • 218 parameters
  • H-atom parameters constrained
  • Δρmax = 0.17 e Å−3
  • Δρmin = −0.22 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989 [triangle]); cell refinement: SET4 in CAD-4 Software; data reduction: HELENA (Spek, 1996 [triangle]); program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808043262/rz2278sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808043262/rz2278Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and the Fundação de Apoio à Pesquisa Científica e Tecnológica do Estado de Santa Catarina (FAPESC) for financial assistance.

supplementary crystallographic information

Comment

Nitrogen-containing building blocks derived from α-methylene-β-hydroxy esters (Morita-Baylis-Hillman adducts) have been widely employed in modern organic chemistry for the synthesis of natural products and heterocycles of biological relevance (Singh & Batra, 2008; Masson et al., 2007; Basavaiah et al., 2003). During our studies on the Morita-Baylis-Hillman reaction (Bortoluzzi et al., 2006; Fernandes et al., 2004; Sá et al., 2006; Sá et al., 2007; Sá et al., 2008), we reported the high-yield preparation of N-allylic imine (I) (Scheme 1) and analogs by a tandem Staudinger/Aza-Wittig process involving allyl azide (II) and a combination of triphenylphosphine and 3-nitrobenzaldehyde (Sá, 2003). In spite of the full chemical characterization described for the multifunctional compound (I), the stereochemistry of the imine double bond could not be unambiguously elucidated and was tentatively assigned as being E on the basis of the available data (Sá, 2003).

The molecular structure of the title compound adopts a T-shaped conformation (Fig. 1). The E stereochemistry for the imine double bond was unambiguously elucidated by X-ray analysis. The torsion angles N2—C1—C11—C12 of -8.2 (3)° and C12—C13—N13—O14 of 9.2 (3)° demonstrate that the (3-nitrobenzylidene)amino moiety is almost planar. The plane of the nitro group deviates of 8.9 (3)° with respect to the mean plane of the parent phenyl ring. In the 3-phenylacryloyl moiety, the acrylic ester fragment is also almost planar with as indicated by the C5–C4–C6–O7 torsion angle of 175.67 (18)°, whereas the phenyl ring is twisted by 41.44 (7)°, probably due to steric effect. This observation indicates that the vinyl C═C double bond is strongly conjugated with the carboxyl group instead that with the aromatic phenyl ring. A search using Mogul (Bruno et al., 2004) based on the CCDC system (version 5.29; Allen, 2002) revealed that the bond lengths found in the structure of (I) are within the expected range for organic compounds. In the crystal packing, molecules are linked by intermolecular C—H···O hydrogen bonding interactions (Table 1) to form chains running parallel to the [0 1 1] direction (Fig. 2).

Experimental

Allyl imine (I) was prepared as previously described (Sá, 2003). Allyl azide (II) and triphenylphosphine (1.0 mmol each) were stirred in anhydrous CHCl3 (3.0 ml) and after evolution of N2 has ceased, 3-nitrobenzaldehyde (1.0 mmol) was added and the mixture was stirred for further 20 h at room temperature. Concentration of the final mixture and separation of triphenylphosphine oxide by crystallization from ethyl ether furnished a white solid (84% yield). A careful recrystallization from ethyl acetate/hexane (1:3 v/v) provided crystals (mp 114.3–115.3 °C) suitable for X-ray crystallographic analysis.

Refinement

All H atoms were placed at idealized positions and refined as riding, with C—H = 0.93–0.97 Å and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms.

Figures

Fig. 1.
The molecular structure of the title compound with the labeling scheme. Displacement ellipsoids are shown at the 40% probability level.
Fig. 2.
Packing diagram of the title compound showing the formation of chains parallel to the [0 1 1] direction. Hydrogen bonds are shown as dashed lines.
Fig. 3.
Reaction scheme.

Crystal data

C18H16N2O4Z = 2
Mr = 324.33F(000) = 340
Triclinic, P1Dx = 1.323 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 8.6035 (12) ÅCell parameters from 25 reflections
b = 8.7829 (14) Åθ = 5.3–16.7°
c = 12.4680 (14) ŵ = 0.10 mm1
α = 79.275 (18)°T = 293 K
β = 76.526 (13)°Irregular block, colorless
γ = 63.158 (14)°0.50 × 0.30 × 0.20 mm
V = 813.9 (2) Å3

Data collection

Enraf–Nonius CAD-4 diffractometerRint = 0.024
Radiation source: fine-focus sealed tubeθmax = 25.1°, θmin = 1.7°
graphiteh = −10→9
ω–2θ scansk = −10→10
3026 measured reflectionsl = −14→0
2883 independent reflections3 standard reflections every 200 reflections
2165 reflections with > 2σ (I) intensity decay: 1%

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.09w = 1/[σ2(Fo2) + (0.0588P)2 + 0.1527P] where P = (Fo2 + 2Fc2)/3
2883 reflections(Δ/σ)max < 0.001
218 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = −0.22 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.1755 (2)0.5606 (2)0.77725 (14)0.0470 (4)
H10.16480.66150.79830.056*
N20.1722 (2)0.55429 (18)0.67793 (12)0.0492 (4)
C30.1642 (3)0.7065 (2)0.60179 (15)0.0514 (5)
H3A0.27000.67410.54590.062*
H3B0.16270.79080.64300.062*
C40.0043 (2)0.7874 (2)0.54518 (14)0.0465 (4)
C50.0074 (2)0.7661 (2)0.44100 (14)0.0488 (4)
H5−0.09600.83300.41210.059*
C6−0.1594 (3)0.9030 (2)0.61246 (15)0.0515 (5)
O7−0.1704 (2)0.91839 (19)0.70815 (11)0.0734 (4)
O8−0.29582 (18)0.98968 (18)0.55747 (11)0.0639 (4)
C9−0.4579 (3)1.1040 (3)0.6204 (2)0.0796 (7)
H9A−0.49231.04110.68550.119*
H9B−0.54931.15320.57580.119*
H9C−0.43981.19360.64160.119*
C110.1958 (2)0.4135 (2)0.86183 (14)0.0446 (4)
C120.1900 (2)0.2681 (2)0.83818 (13)0.0434 (4)
H120.17260.26100.76870.052*
C130.2104 (2)0.1340 (2)0.91989 (14)0.0471 (4)
N130.2048 (2)−0.01950 (19)0.89347 (14)0.0573 (4)
O140.2052 (2)−0.03191 (17)0.79774 (13)0.0745 (5)
O150.2022 (3)−0.13071 (19)0.96882 (14)0.0879 (5)
C140.2357 (3)0.1386 (3)1.02445 (15)0.0579 (5)
H140.24870.04651.07800.069*
C150.2412 (3)0.2832 (3)1.04694 (16)0.0625 (5)
H150.25820.28961.11660.075*
C160.2215 (3)0.4193 (3)0.96652 (15)0.0555 (5)
H160.22550.51630.98290.067*
C210.1565 (2)0.6482 (2)0.36716 (14)0.0465 (4)
C220.1946 (3)0.7024 (2)0.25635 (15)0.0546 (5)
H220.12520.81330.22940.066*
C230.3330 (3)0.5951 (3)0.18584 (17)0.0615 (5)
H230.35780.63450.11220.074*
C240.4353 (3)0.4296 (3)0.22366 (18)0.0631 (5)
H240.52840.35670.17580.076*
C250.3986 (3)0.3727 (3)0.33283 (19)0.0660 (6)
H250.46710.26070.35850.079*
C260.2610 (3)0.4802 (2)0.40479 (17)0.0575 (5)
H260.23790.44050.47850.069*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0563 (11)0.0396 (9)0.0488 (10)−0.0228 (8)−0.0137 (8)0.0000 (7)
N20.0628 (9)0.0407 (8)0.0475 (9)−0.0251 (7)−0.0172 (7)0.0061 (6)
C30.0672 (12)0.0433 (10)0.0499 (10)−0.0310 (9)−0.0165 (9)0.0089 (8)
C40.0590 (11)0.0372 (9)0.0456 (10)−0.0253 (8)−0.0114 (8)0.0066 (7)
C50.0529 (10)0.0424 (9)0.0495 (10)−0.0203 (8)−0.0123 (8)0.0039 (7)
C60.0668 (12)0.0407 (9)0.0452 (10)−0.0263 (9)−0.0070 (9)0.0059 (8)
O70.0964 (11)0.0643 (9)0.0464 (8)−0.0243 (8)−0.0094 (7)−0.0052 (7)
O80.0579 (8)0.0640 (9)0.0542 (8)−0.0156 (7)−0.0047 (6)−0.0037 (6)
C90.0652 (14)0.0729 (15)0.0783 (16)−0.0156 (12)0.0041 (11)−0.0130 (12)
C110.0488 (10)0.0412 (9)0.0426 (9)−0.0192 (8)−0.0077 (7)−0.0012 (7)
C120.0486 (10)0.0415 (9)0.0377 (9)−0.0174 (8)−0.0083 (7)−0.0019 (7)
C130.0512 (10)0.0381 (9)0.0462 (10)−0.0161 (8)−0.0066 (8)−0.0008 (7)
N130.0659 (10)0.0370 (8)0.0624 (10)−0.0180 (7)−0.0122 (8)0.0017 (7)
O140.1120 (13)0.0471 (8)0.0688 (10)−0.0313 (8)−0.0292 (9)−0.0051 (7)
O150.1339 (15)0.0511 (9)0.0784 (11)−0.0470 (10)−0.0178 (10)0.0146 (8)
C140.0723 (13)0.0535 (11)0.0439 (10)−0.0271 (10)−0.0127 (9)0.0088 (8)
C150.0845 (15)0.0690 (13)0.0398 (10)−0.0371 (11)−0.0171 (10)0.0012 (9)
C160.0724 (13)0.0543 (11)0.0467 (10)−0.0325 (10)−0.0109 (9)−0.0047 (8)
C210.0509 (10)0.0436 (9)0.0493 (10)−0.0228 (8)−0.0130 (8)−0.0018 (8)
C220.0623 (12)0.0505 (11)0.0479 (10)−0.0202 (9)−0.0164 (9)0.0015 (8)
C230.0650 (12)0.0672 (13)0.0484 (11)−0.0253 (11)−0.0078 (9)−0.0065 (9)
C240.0579 (12)0.0596 (12)0.0693 (14)−0.0199 (10)−0.0076 (10)−0.0179 (10)
C250.0702 (13)0.0401 (10)0.0814 (15)−0.0167 (10)−0.0171 (11)−0.0040 (10)
C260.0683 (12)0.0432 (10)0.0593 (12)−0.0253 (9)−0.0111 (9)0.0034 (8)

Geometric parameters (Å, °)

C1—N21.257 (2)C13—C141.381 (3)
C1—C111.478 (2)C13—N131.470 (2)
C1—H10.9300N13—O141.218 (2)
N2—C31.473 (2)N13—O151.227 (2)
C3—C41.509 (2)C14—C151.373 (3)
C3—H3A0.9700C14—H140.9300
C3—H3B0.9700C15—C161.383 (3)
C4—C51.339 (2)C15—H150.9300
C4—C61.481 (3)C16—H160.9300
C5—C211.473 (2)C21—C221.389 (3)
C5—H50.9300C21—C261.395 (3)
C6—O71.203 (2)C22—C231.373 (3)
C6—O81.342 (2)C22—H220.9300
O8—C91.445 (2)C23—C241.376 (3)
C9—H9A0.9600C23—H230.9300
C9—H9B0.9600C24—C251.375 (3)
C9—H9C0.9600C24—H240.9300
C11—C161.387 (2)C25—C261.382 (3)
C11—C121.388 (2)C25—H250.9300
C12—C131.380 (2)C26—H260.9300
C12—H120.9300
N2—C1—C11122.48 (16)C12—C13—N13118.04 (16)
N2—C1—H1118.8C14—C13—N13119.12 (16)
C11—C1—H1118.8O14—N13—O15122.86 (17)
C1—N2—C3116.16 (15)O14—N13—C13118.70 (15)
N2—C3—C4113.24 (14)O15—N13—C13118.44 (17)
N2—C3—H3A108.9C15—C14—C13118.01 (17)
C4—C3—H3A108.9C15—C14—H14121.0
N2—C3—H3B108.9C13—C14—H14121.0
C4—C3—H3B108.9C14—C15—C16120.37 (18)
H3A—C3—H3B107.7C14—C15—H15119.8
C5—C4—C6121.26 (17)C16—C15—H15119.8
C5—C4—C3124.23 (17)C15—C16—C11121.17 (18)
C6—C4—C3114.43 (16)C15—C16—H16119.4
C4—C5—C21127.15 (17)C11—C16—H16119.4
C4—C5—H5116.4C22—C21—C26118.14 (17)
C21—C5—H5116.4C22—C21—C5120.03 (16)
O7—C6—O8122.52 (18)C26—C21—C5121.82 (16)
O7—C6—C4123.31 (18)C23—C22—C21121.17 (18)
O8—C6—C4114.17 (16)C23—C22—H22119.4
C6—O8—C9115.78 (16)C21—C22—H22119.4
O8—C9—H9A109.5C22—C23—C24120.28 (19)
O8—C9—H9B109.5C22—C23—H23119.9
H9A—C9—H9B109.5C24—C23—H23119.9
O8—C9—H9C109.5C25—C24—C23119.5 (2)
H9A—C9—H9C109.5C25—C24—H24120.3
H9B—C9—H9C109.5C23—C24—H24120.3
C16—C11—C12118.96 (16)C24—C25—C26120.70 (19)
C16—C11—C1120.11 (16)C24—C25—H25119.7
C12—C11—C1120.93 (15)C26—C25—H25119.7
C13—C12—C11118.65 (16)C25—C26—C21120.21 (19)
C13—C12—H12120.7C25—C26—H26119.9
C11—C12—H12120.7C21—C26—H26119.9
C12—C13—C14122.84 (17)
C11—C1—N2—C3−175.74 (16)C14—C13—N13—O14−170.73 (18)
C1—N2—C3—C4−121.34 (18)C12—C13—N13—O15−171.67 (17)
N2—C3—C4—C5−101.1 (2)C14—C13—N13—O158.4 (3)
N2—C3—C4—C682.07 (19)C12—C13—C14—C15−0.2 (3)
C6—C4—C5—C21−175.96 (15)N13—C13—C14—C15179.74 (18)
C3—C4—C5—C217.5 (3)C13—C14—C15—C160.1 (3)
C5—C4—C6—O7175.67 (18)C14—C15—C16—C110.0 (3)
C3—C4—C6—O7−7.4 (2)C12—C11—C16—C150.0 (3)
C5—C4—C6—O8−4.2 (2)C1—C11—C16—C15−179.85 (18)
C3—C4—C6—O8172.71 (14)C4—C5—C21—C22−138.14 (19)
O7—C6—O8—C90.2 (3)C4—C5—C21—C2642.9 (3)
C4—C6—O8—C9−179.94 (16)C26—C21—C22—C23−1.1 (3)
N2—C1—C11—C16171.68 (18)C5—C21—C22—C23179.90 (17)
N2—C1—C11—C12−8.2 (3)C21—C22—C23—C241.2 (3)
C16—C11—C12—C13−0.1 (3)C22—C23—C24—C25−0.5 (3)
C1—C11—C12—C13179.71 (16)C23—C24—C25—C26−0.3 (3)
C11—C12—C13—C140.3 (3)C24—C25—C26—C210.4 (3)
C11—C12—C13—N13−179.70 (15)C22—C21—C26—C250.3 (3)
C12—C13—N13—O149.2 (3)C5—C21—C26—C25179.29 (17)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C23—H23···O15i0.932.553.307 (3)139

Symmetry codes: (i) x, y+1, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2278).

References

  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Basavaiah, D., Rao, A. J. & Satyanarayana, T. (2003). Chem. Rev.103, 811–891. [PubMed]
  • Bortoluzzi, A. J., Fernandes, L. & Sá, M. M. (2006). Acta Cryst. E62, o3391–o3392.
  • Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci.44, 2133–2144. [PubMed]
  • Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  • Fernandes, L., Bortoluzzi, A. J. & Sá, M. M. (2004). Tetrahedron, 60, 9983–9989.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Masson, G., Housseman, C. & Zhu, J. (2007). Angew. Chem. Int. Ed.46, 4614–4628. [PubMed]
  • Sá, M. M. (2003). J. Braz. Chem. Soc.14, 1005–1010.
  • Sá, M. M., Fernandes, L., Ferreira, M. & Bortoluzzi, A. J. (2008). Tetrahedron Lett.49, 1228–1232.
  • Sá, M. M., Meier, L., Fernandes, L. & Pergher, S. B. C. (2007). Catal. Commun.8, 1625–1629.
  • Sá, M. M., Ramos, M. D. & Fernandes, L. (2006). Tetrahedron, 62, 11652–11656.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Singh, V. & Batra, S. (2008). Tetrahedron, 64, 4511–4574.
  • Spek, A. L. (1996). HELENA University of Utrecht, The Netherlands.
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography