PMCCPMCCPMCC

Conseils de recherche
Les critères de recherche 

Avancée

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 January 1; 65(Pt 1): o188.
Published online 2008 December 20. doi:  10.1107/S160053680804292X
PMCID: PMC2968096

Methyl 2-diphenyl­phosphor­yloxy-2-aza­bicyclo­[2.2.1]hept-5-ene-3-exo-carboxyl­ate

Abstract

In the title compound, C20H20NO4P, the dihedral angle between the phenyl rings is 68.52 (7)°. In the crystal structure, the mol­ecules are linked by a weak C—H(...)π(arene) inter­action along [010] involving the phenyl CH group and the phenyl rings. There are no further significant inter­molecular inter­actions.

Related literature

For the preparation of the precursor of the title compound, see: Sousa et al. (2008 [triangle]). For related literature about this type of bicyclic compound and their relevance see: Vale et al. (2006 [triangle]), Alves et al. (2006 [triangle]), Yoda et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o188-scheme1.jpg

Experimental

Crystal data

  • C20H20NO4P
  • M r = 369.34
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o188-efi1.jpg
  • a = 18.4223 (6) Å
  • b = 8.5522 (3) Å
  • c = 11.6022 (4) Å
  • β = 97.1810 (10)°
  • V = 1813.60 (11) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.18 mm−1
  • T = 100 (2) K
  • 0.37 × 0.34 × 0.34 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2006 [triangle]) T min = 0.871, T max = 0.940
  • 14828 measured reflections
  • 3717 independent reflections
  • 3172 reflections with I > 2σ(I)
  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.091
  • S = 1.05
  • 3717 reflections
  • 236 parameters
  • H-atom parameters constrained
  • Δρmax = 0.29 e Å−3
  • Δρmin = −0.41 e Å−3

Data collection: APEX2 (Bruker, 2006 [triangle]); cell refinement: SAINT (Bruker, 2006 [triangle]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, New_Global_Publ_Block. DOI: 10.1107/S160053680804292X/bx2188sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680804292X/bx2188Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Centro de Investigação em Química of the University of Porto. The X-ray data were collected at the Unidade de Raios X, RIAIDT, University of Santiago de Compostela. The authors thank Antonio L. Llamas-Saiz for his help and the Fundação para a Ciência e Tecnologia (FCT) and Xunta de Galicia for financial support (grants POCTI/QUI/44471/2002 and 07CSA008203-PR, respectively). CADS thanks the FCT for grant No. SFRH/BD/31526/2006.

supplementary crystallographic information

Comment

The stucture of the title compound, (I), is shown in Fig. 1. It can be seen the existence of three chiral centers at C2 (R), C5 (S) and C6 (R). In the crystalline structure, the molecules are linked by a weak C—H···π interaction, Fig. 2 [H12-πi 2.77 Å, C12-H12-π 142°, C12-π 3.566 (2) Å, symmetry code: (i) 1-x,1/2+y, 1/2-z] along [010] directions. There are no further significant intermolecular interactions.

Experimental

The title compound was synthesized from the previously prepared (3exo)-2-hydroxy-2-azabicyclo[2.2.1]hept-5-ene-3-carboxylate (Sousa et al. 2008). Equimolar amounts of (3exo)-2-hydroxy-2-azabicyclo[2.2.1]hept-5-ene-3-carboxylate (0.56 g, 3.3 mmol) and diphenylpfosphinic chloride (0.63 ml, 3.3 mmol), in the presence of 1 eq. of anidrous triethylamine and and a catalytic quantity of DMAP, were let to react overnigth in dichloromethane, at room temperature under argon atmosphere. Water was added and the product was extracted with dichloromethane (3 × 15 ml). The organic layers were dried over sodium sulfate and the solvent was evaporated. The obtained product was purified by flash chromatography (eluent: dichloromethane/diethyl ether 1:1), leading to a light clear yellow oil in 80% yield. Crystals of (I) were made from a slow evaporation of a dichloromethane/hexane solution.

Refinement

All H atoms were found in a difference Fourier map and placed in geometrically idealized and constrained to ride on their parent atoms [C—H = 0.95–1.00 Å and Uiso(H) = 1.2 or 1.5Ueq(C)].

Figures

Fig. 1.
A view of (I), showing the three chiral carbons C2, C5 and C6 and the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius.
Fig. 2.
Part of the crystal structute of (I) viewed along the c axis. Dashed lines show C—H···π (arene) interactions. Only H atoms participating in hydrogen bonding are shown. π is the centroid of the ring defined ...

Crystal data

C20H20NO4PF(000) = 776
Mr = 369.34Dx = 1.353 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1953 reflections
a = 18.4223 (6) Åθ = 3.1–25.9°
b = 8.5522 (3) ŵ = 0.18 mm1
c = 11.6022 (4) ÅT = 100 K
β = 97.181 (1)°Prism, colourless
V = 1813.60 (11) Å30.37 × 0.34 × 0.34 mm
Z = 4

Data collection

Bruker ApexII CCD area-detector diffractometer3717 independent reflections
Radiation source: sealed tube3172 reflections with I > 2σ(I)
graphiteRint = 0.033
phi and ω scansθmax = 26.4°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2006)h = −23→22
Tmin = 0.871, Tmax = 0.940k = 0→10
14828 measured reflectionsl = 0→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.0429P)2 + 0.8843P] where P = (Fo2 + 2Fc2)/3
3717 reflections(Δ/σ)max = 0.001
236 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = −0.41 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.04005 (8)0.24766 (17)0.08174 (13)0.0156 (3)
H1A−0.0050.30990.06140.019*
H1B0.03180.16460.13810.019*
C20.10739 (8)0.34831 (17)0.12086 (13)0.0140 (3)
H20.10380.41590.19020.017*
C30.11615 (8)0.43459 (18)0.00937 (13)0.0157 (3)
H30.13280.5390.0030.019*
C40.09614 (8)0.33679 (18)−0.07788 (13)0.0170 (3)
H40.09650.358−0.15820.02*
C50.07271 (8)0.18529 (18)−0.02579 (13)0.0152 (3)
H50.04080.1144−0.07880.018*
C60.14566 (8)0.11298 (17)0.03659 (12)0.0124 (3)
H60.18490.1189−0.01550.015*
C70.13407 (7)−0.05517 (17)0.07081 (12)0.0126 (3)
C80.10791 (9)−0.23359 (18)0.21479 (14)0.0188 (3)
H8A0.0638−0.27590.16940.028*
H8B0.1021−0.23640.29760.028*
H8C0.1503−0.29680.2010.028*
C90.37374 (8)0.32042 (17)0.19955 (13)0.0135 (3)
C100.39313 (8)0.28107 (18)0.09030 (13)0.0156 (3)
H100.35920.22810.03530.019*
C110.46227 (8)0.31986 (19)0.06275 (14)0.0196 (3)
H110.47580.2923−0.0110.024*
C120.51155 (8)0.3985 (2)0.14240 (15)0.0220 (4)
H120.5590.42320.12360.026*
C130.49180 (9)0.4412 (2)0.24924 (15)0.0228 (4)
H130.52530.49740.30290.027*
C140.42326 (8)0.40209 (18)0.27826 (14)0.0180 (3)
H140.410.4310.35190.022*
C150.29184 (7)0.05353 (17)0.27096 (13)0.0125 (3)
C160.31090 (8)−0.05303 (18)0.18853 (13)0.0156 (3)
H160.3218−0.0170.11510.019*
C170.31393 (9)−0.21192 (18)0.21417 (14)0.0190 (3)
H170.3284−0.28410.15910.023*
C180.29590 (8)−0.26536 (18)0.31971 (15)0.0200 (3)
H180.2972−0.37420.33640.024*
C190.27594 (8)−0.16006 (19)0.40103 (14)0.0185 (3)
H190.2629−0.1970.47290.022*
C200.27503 (8)−0.00078 (18)0.37771 (13)0.0149 (3)
H200.26290.07130.43460.018*
N10.16332 (6)0.21932 (14)0.13812 (11)0.0116 (3)
O10.11889 (6)−0.07336 (12)0.17981 (9)0.0166 (2)
O20.13582 (6)−0.16137 (12)0.00278 (9)0.0190 (2)
O30.23563 (5)0.28855 (12)0.12671 (9)0.0131 (2)
O40.27071 (6)0.34776 (12)0.34900 (9)0.0158 (2)
P10.288697 (19)0.26111 (4)0.24650 (3)0.01112 (11)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0105 (7)0.0152 (8)0.0210 (8)0.0011 (6)0.0016 (6)0.0022 (6)
C20.0121 (7)0.0126 (7)0.0175 (7)0.0026 (6)0.0025 (6)−0.0004 (6)
C30.0118 (7)0.0132 (7)0.0218 (8)0.0026 (6)0.0016 (6)0.0041 (6)
C40.0154 (7)0.0179 (8)0.0172 (7)0.0029 (6)0.0000 (6)0.0060 (6)
C50.0130 (7)0.0149 (8)0.0167 (7)−0.0011 (6)−0.0020 (6)0.0021 (6)
C60.0112 (7)0.0123 (7)0.0135 (7)−0.0005 (6)0.0008 (5)0.0000 (6)
C70.0081 (6)0.0149 (7)0.0145 (7)0.0003 (6)−0.0001 (5)−0.0004 (6)
C80.0206 (8)0.0145 (8)0.0209 (8)−0.0045 (6)0.0010 (6)0.0058 (6)
C90.0106 (7)0.0116 (7)0.0180 (7)0.0001 (6)0.0005 (6)0.0035 (6)
C100.0133 (7)0.0161 (8)0.0169 (7)−0.0018 (6)−0.0003 (6)0.0041 (6)
C110.0170 (8)0.0232 (8)0.0192 (8)0.0001 (6)0.0047 (6)0.0046 (6)
C120.0131 (7)0.0242 (9)0.0289 (9)−0.0026 (6)0.0031 (6)0.0075 (7)
C130.0152 (8)0.0235 (9)0.0283 (9)−0.0056 (7)−0.0031 (7)−0.0009 (7)
C140.0157 (7)0.0174 (8)0.0205 (8)−0.0009 (6)0.0002 (6)−0.0009 (6)
C150.0086 (7)0.0114 (7)0.0165 (7)−0.0001 (5)−0.0021 (5)0.0011 (6)
C160.0139 (7)0.0163 (8)0.0162 (7)0.0004 (6)0.0008 (6)0.0004 (6)
C170.0188 (8)0.0145 (8)0.0226 (8)0.0031 (6)−0.0022 (6)−0.0060 (6)
C180.0166 (8)0.0120 (8)0.0296 (9)−0.0001 (6)−0.0043 (7)0.0042 (7)
C190.0151 (7)0.0198 (8)0.0202 (8)−0.0022 (6)0.0002 (6)0.0068 (6)
C200.0121 (7)0.0154 (8)0.0169 (7)−0.0008 (6)0.0008 (6)−0.0007 (6)
N10.0071 (6)0.0117 (6)0.0161 (6)−0.0022 (5)0.0017 (5)−0.0004 (5)
O10.0224 (6)0.0119 (5)0.0163 (5)−0.0032 (4)0.0049 (4)0.0011 (4)
O20.0245 (6)0.0139 (6)0.0189 (6)−0.0012 (4)0.0038 (5)−0.0031 (5)
O30.0079 (5)0.0142 (5)0.0168 (5)−0.0033 (4)0.0003 (4)0.0029 (4)
O40.0165 (5)0.0135 (5)0.0177 (5)−0.0003 (4)0.0030 (4)−0.0014 (4)
P10.00981 (19)0.01024 (19)0.0131 (2)−0.00066 (14)0.00083 (14)0.00053 (14)

Geometric parameters (Å, °)

C1—C21.531 (2)C10—C111.392 (2)
C1—C51.546 (2)C10—H100.95
C1—H1A0.99C11—C121.386 (2)
C1—H1B0.99C11—H110.95
C2—N11.5057 (18)C12—C131.384 (2)
C2—C31.515 (2)C12—H120.95
C2—H21C13—C141.388 (2)
C3—C41.329 (2)C13—H130.95
C3—H30.95C14—H140.95
C4—C51.515 (2)C15—C201.393 (2)
C4—H40.95C15—C161.397 (2)
C5—C61.571 (2)C15—P11.7976 (15)
C5—H51C16—C171.391 (2)
C6—N11.4915 (18)C16—H160.95
C6—C71.514 (2)C17—C181.386 (2)
C6—H61C17—H170.95
C7—O21.2064 (18)C18—C191.387 (2)
C7—O11.3379 (17)C18—H180.95
C8—O11.4505 (18)C19—C201.389 (2)
C8—H8A0.98C19—H190.95
C8—H8B0.98C20—H200.95
C8—H8C0.98N1—O31.4786 (15)
C9—C141.395 (2)O3—P11.6133 (10)
C9—C101.400 (2)O4—P11.4737 (11)
C9—P11.7950 (15)
C2—C1—C592.89 (11)C11—C10—H10120.2
C2—C1—H1A113.1C9—C10—H10120.2
C5—C1—H1A113.1C12—C11—C10120.30 (15)
C2—C1—H1B113.1C12—C11—H11119.8
C5—C1—H1B113.1C10—C11—H11119.8
H1A—C1—H1B110.5C13—C12—C11120.11 (14)
N1—C2—C3109.04 (11)C13—C12—H12119.9
N1—C2—C198.23 (11)C11—C12—H12119.9
C3—C2—C1100.92 (12)C12—C13—C14120.20 (15)
N1—C2—H2115.5C12—C13—H13119.9
C3—C2—H2115.5C14—C13—H13119.9
C1—C2—H2115.5C13—C14—C9120.14 (15)
C4—C3—C2107.14 (13)C13—C14—H14119.9
C4—C3—H3126.4C9—C14—H14119.9
C2—C3—H3126.4C20—C15—C16119.59 (14)
C3—C4—C5107.46 (13)C20—C15—P1117.59 (11)
C3—C4—H4126.3C16—C15—P1122.82 (11)
C5—C4—H4126.3C17—C16—C15119.85 (14)
C4—C5—C1100.71 (12)C17—C16—H16120.1
C4—C5—C6104.50 (12)C15—C16—H16120.1
C1—C5—C699.25 (11)C18—C17—C16120.24 (15)
C4—C5—H5116.6C18—C17—H17119.9
C1—C5—H5116.6C16—C17—H17119.9
C6—C5—H5116.6C17—C18—C19120.02 (14)
N1—C6—C7113.33 (11)C17—C18—H18120
N1—C6—C5102.32 (11)C19—C18—H18120
C7—C6—C5110.74 (12)C18—C19—C20120.14 (15)
N1—C6—H6110.1C18—C19—H19119.9
C7—C6—H6110.1C20—C19—H19119.9
C5—C6—H6110.1C19—C20—C15120.11 (14)
O2—C7—O1123.83 (14)C19—C20—H20119.9
O2—C7—C6121.82 (13)C15—C20—H20119.9
O1—C7—C6114.29 (12)O3—N1—C6106.47 (10)
O1—C8—H8A109.5O3—N1—C2107.69 (10)
O1—C8—H8B109.5C6—N1—C2105.28 (11)
H8A—C8—H8B109.5C7—O1—C8115.30 (12)
O1—C8—H8C109.5N1—O3—P1108.68 (8)
H8A—C8—H8C109.5O4—P1—O3116.67 (6)
H8B—C8—H8C109.5O4—P1—C9113.30 (7)
C14—C9—C10119.54 (13)O3—P1—C998.94 (6)
C14—C9—P1117.84 (12)O4—P1—C15112.04 (7)
C10—C9—P1122.54 (11)O3—P1—C15106.49 (6)
C11—C10—C9119.67 (14)C9—P1—C15108.35 (7)
C5—C1—C2—N1−60.85 (12)C18—C19—C20—C152.1 (2)
C5—C1—C2—C350.47 (12)C16—C15—C20—C19−1.2 (2)
N1—C2—C3—C468.17 (15)P1—C15—C20—C19179.43 (11)
C1—C2—C3—C4−34.58 (15)C7—C6—N1—O3120.70 (12)
C2—C3—C4—C50.88 (16)C5—C6—N1—O3−120.03 (11)
C3—C4—C5—C132.73 (15)C7—C6—N1—C2−125.14 (12)
C3—C4—C5—C6−69.86 (15)C5—C6—N1—C2−5.87 (13)
C2—C1—C5—C4−49.87 (12)C3—C2—N1—O351.25 (14)
C2—C1—C5—C656.93 (12)C1—C2—N1—O3155.87 (10)
C4—C5—C6—N171.20 (13)C3—C2—N1—C6−62.06 (14)
C1—C5—C6—N1−32.48 (13)C1—C2—N1—C642.56 (13)
C4—C5—C6—C7−167.72 (12)O2—C7—O1—C83.0 (2)
C1—C5—C6—C788.59 (13)C6—C7—O1—C8−179.72 (12)
N1—C6—C7—O2−162.95 (13)C6—N1—O3—P1−127.24 (9)
C5—C6—C7—O282.74 (17)C2—N1—O3—P1120.25 (10)
N1—C6—C7—O119.76 (17)N1—O3—P1—O4−68.47 (10)
C5—C6—C7—O1−94.56 (14)N1—O3—P1—C9169.71 (9)
C14—C9—C10—C111.8 (2)N1—O3—P1—C1557.44 (9)
P1—C9—C10—C11−174.85 (12)C14—C9—P1—O418.47 (14)
C9—C10—C11—C12−0.7 (2)C10—C9—P1—O4−164.79 (12)
C10—C11—C12—C13−1.0 (2)C14—C9—P1—O3142.70 (12)
C11—C12—C13—C141.6 (3)C10—C9—P1—O3−40.56 (14)
C12—C13—C14—C9−0.4 (2)C14—C9—P1—C15−106.51 (13)
C10—C9—C14—C13−1.3 (2)C10—C9—P1—C1570.23 (14)
P1—C9—C14—C13175.54 (12)C20—C15—P1—O42.24 (13)
C20—C15—C16—C17−0.9 (2)C16—C15—P1—O4−177.14 (11)
P1—C15—C16—C17178.48 (11)C20—C15—P1—O3−126.43 (11)
C15—C16—C17—C182.0 (2)C16—C15—P1—O354.19 (13)
C16—C17—C18—C19−1.1 (2)C20—C15—P1—C9127.97 (11)
C17—C18—C19—C20−1.0 (2)C16—C15—P1—C9−51.41 (14)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C12—H12···Cg1i0.952.773.566 (2)142

Symmetry codes: (i) −x+1, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2188).

References

  • Altomare, A., Cascarano, C., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Burla, M. C., Polidori, G., Camalli, M. & Spagna, R. (1997). SIR97 University of Bari, Italy.
  • Alves, M. J., García-Mera, X., Vale, M. L. C., Santos, T. P., Aguiar, F. R. & Rodrígues-Borges, J. E. (2006). Tetrahedron Lett 47, 7595–7597.
  • Bruker (2006). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sousa, C. A. D., Vale, M. L. C., Rodrígues-Borges, J. E. & García-Mera, X. (2008). Tetrahedron Lett 49, 5777–5781.
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Vale, M. L. C., Rodrígues-Borges, J. E., Caamaño, O., Fernández, F. & García-Mera, X. (2006). Tetrahedron, 62, 9475–9482.
  • Yoda, H., Yamazaki, H., Kawauchi, M. & Takabe, K. (1995). Tetrahedron Asymmetry, 6, 2669–2672.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography