PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 January 1; 65(Pt 1): o180–o181.
Published online 2008 December 20. doi:  10.1107/S1600536808042797
PMCID: PMC2968090

1-Benzothio­phene-2-carbaldehyde 4-ethyl­thio­semicarbazone

Abstract

The title compound, C13H15N3S2, crystallizes with two unique mol­ecules, A and B, in the asymmetric unit. These differ principally in that the methyl group of the 4-ethyl­thio­semicarbazone moiety is ordered in mol­ecule A but disordered over two positions with equal occupancies in mol­ecule B. The benzothio­phene group and the semicarbazone unit are inclined at dihedral angles of 11.78 (8)° for mol­ecule A and 8.18 (13)° for mol­ecule B. Weak intra­molecular N—H(...)N inter­actions contribute to the planarity of the semicarbazone units in both mol­ecules and each mol­ecule adopts an E configuration with respect to the C=N bonds. In the crystal structure, mol­ecules form centrosymmetric dimers as a result of N—H(...)S hydrogen bonds, augmented by C—H(...)S inter­actions for mol­ecule A and C—H(...)S inter­actions for mol­ecule B. Weak C—H(...)π inter­actions stack the dimers of both mol­ecules into columns down the a axis.

Related literature

For background to the biological activity of thio­semicarbazones, see: de Sousa et al. (2007 [triangle]). For related structures, see: Chuev et al. (1992 [triangle]); de Lima et al. (2002 [triangle]); Isik et al. (2006 [triangle]); Kayed et al. (2008 [triangle]). For details of graph-set analysis of hydrogen-bonding patterns, see: Bernstein et al. (1995 [triangle]). For reference structural data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o180-scheme1.jpg

Experimental

Crystal data

  • C13H15N3S2
  • M r = 277.40
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o180-efi1.jpg
  • a = 5.5343 (5) Å
  • b = 10.9943 (10) Å
  • c = 23.443 (2) Å
  • α = 78.825 (5)°
  • β = 88.175 (5)°
  • γ = 76.298 (5)°
  • V = 1359.4 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.38 mm−1
  • T = 92 (2) K
  • 0.37 × 0.10 × 0.05 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2006 [triangle]) T min = 0.873, T max = 0.981
  • 18044 measured reflections
  • 5907 independent reflections
  • 4307 reflections with I > 2σ(I)
  • R int = 0.051

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.111
  • S = 1.05
  • 5907 reflections
  • 354 parameters
  • 6 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.49 e Å−3
  • Δρmin = −0.41 e Å−3

Data collection: APEX2 (Bruker 2006 [triangle]); cell refinement: APEX2 and SAINT (Bruker 2006 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]) and TITAN (Hunter & Simpson, 1999 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]) and Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: SHELXL97, enCIFer (Allen et al., 2004 [triangle]), PLATON (Spek, 2003 [triangle]) and publCIF (Westrip, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808042797/ci2731sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808042797/ci2731Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Universiti Kebangsaan Malaysia and the Ministry of Higher Education, Malaysia, for supporting this research through grants UKM-ST-01-FRGS0022–2006 and UKM-GUP-NBT-08–27-112. The authors also thank the University of Otago for purchase of the diffractometer.

supplementary crystallographic information

Comment

Thiosemicarbazones are a class of compounds that have been investigated because of their biological activity (de Sousa et al., 2007). As a continuation of our work on thiosemicarbazone compounds as potential ligands in transition metal chemistry (Kayed et al., 2008;) we report here the structure of the title compound (Fig. 1), which crystallizes with two unique molecules, A and B, in the asymmetric unit. The two molecules are closely similar with the exception of the methyl C atom of the ethyl group which is disordered over two positions C131 and C132, with equal occupancies. The similarities of the remainder of the two molecules are demonstrated by the fact that the non-hydrogen atoms of molecules A and B overlay in Mercury (Macrae et al., 2006) with an r.m.s. deviation of 0.077 Å, when the C132 disorder component is excluded. The molecules are each reasonably planar with r.m.s. deviations of 0.137 Å and 0.128 Å from the planes through all non-hydrogen atoms of the two molecules excluding the C132 disorder component. The planarity of the N1/N2/C11/S2/N3 segments of both molecules (r.m.s. deviations 0.050 Å for molecule A and 0.037 Å for molecule B) is aided by weak intramolecular N3—H3N···N1 interactions. The benzothiophene groups and the semicarbazone groups are inclined at dihedral angles of 11.78 (8)° for molecule A and 8.18 (13)° for molecule B. Both molecules adopt an E configuration with respect to the C═N bonds, bond distances are normal (Allen et al., 1987) and comparable to those in similar structures (Chuev et al. 1992; de Lima et al. 2002; Isik et al. 2006; Kayed et al. 2008).

In the crystal structure, a centrosymmetric dimer with an R22(8) ring motif (Bernstein et al., 1995) is formed by through N2A—H2NA···S2A hydrogen bonds strengthened by additional C10A—H10A···S2A interactions for molecule A. A second dimer forms via C10B—H10D···S2B interactions for molecule B (Table 1 and Fig. 2). The dimers are further aggregated into columns down the a axis by weak C—H···π interactions involving the C10A and C10B methyl groups and the thiophene rings of adjacent molecules, Fig. 3.

Experimental

The title compound was prepared by heating 35 ml of an ethanolic solution of 2-acetylbenzothiophene (1.76 g, 10 mmol) and 4-ethyl-3-thiosemicarbazide (1.2 g, 10 mmol) under reflux for 2 h. Three drops of concentrated H2SO4 were added. The resulting product was isolated and recrystallized from acetonitrile to afford yellow needles of the title compound in 63.5% yield (m.p. 448–450 K).

Refinement

H atoms bound to N2A, N2B, N3A and N3B were located in a difference electron density map and refined freely with Uiso = 1.2Ueq(N). All other H-atoms were refined using a riding model with d(C-H) = 0.95 Å, Uiso = 1.2Ueq (C) for aromatic, and 0.98 Å and Uiso = 1.5Ueq (C) for CH3 H atoms. The methyl C atom of the ethyl group in molecule B is disordered over two positions, C131 and C132, each with occupancies of approximately 0.5. These occupancies were fixed at 0.5 in the final refinement cycles.

Figures

Fig. 1.
The asymmetric unit of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms. For clarity, only one disorder component is shown.
Fig. 2.
Formation of dimers in the crystal structure of the title compound, through N—H···S and C—H···S hydrogen bonds, shown as dashed lines. H atoms not involved in hydrogen bonding and atoms of ...
Fig. 3.
C—H···π interactions between dimers in the title compound. Cg1 is the centroid of the S1A/C1A/C2A/C3A/C8A ring and Cg2 that of the S1B/C1B/C2B/C3B/C8B ring. H···Cg interactions are drawn ...

Crystal data

C13H15N3S2Z = 4
Mr = 277.40F(000) = 584
Triclinic, P1Dx = 1.355 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.5343 (5) ÅCell parameters from 3088 reflections
b = 10.9943 (10) Åθ = 4.7–52.7°
c = 23.443 (2) ŵ = 0.38 mm1
α = 78.825 (5)°T = 92 K
β = 88.175 (5)°Needle, yellow
γ = 76.298 (5)°0.37 × 0.10 × 0.05 mm
V = 1359.4 (2) Å3

Data collection

Bruker APEXII CCD area-detector diffractometer5907 independent reflections
Radiation source: fine-focus sealed tube4307 reflections with I > 2σ(I)
graphiteRint = 0.051
ω scansθmax = 27.1°, θmin = 0.9°
Absorption correction: multi-scan (SADABS; Bruker, 2006)h = −7→6
Tmin = 0.873, Tmax = 0.981k = −14→14
18044 measured reflectionsl = −30→29

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.05w = 1/[σ2(Fo2) + (0.0519P)2] where P = (Fo2 + 2Fc2)/3
5907 reflections(Δ/σ)max = 0.001
354 parametersΔρmax = 0.49 e Å3
6 restraintsΔρmin = −0.41 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
S1A0.93115 (11)0.05062 (5)0.82595 (2)0.01751 (15)
S2A0.13864 (11)−0.19901 (5)0.99817 (3)0.02041 (15)
N1A0.5271 (3)0.01724 (17)0.90359 (8)0.0153 (4)
N2A0.3543 (3)−0.02135 (17)0.94186 (8)0.0163 (4)
H2NA0.225 (3)0.0337 (19)0.9488 (10)0.028 (7)*
N3A0.5742 (4)−0.22703 (18)0.94436 (8)0.0170 (4)
H3NA0.691 (3)−0.195 (2)0.9300 (10)0.022 (7)*
C1A0.6844 (4)0.1718 (2)0.84181 (9)0.0150 (5)
C2A0.6914 (4)0.2885 (2)0.80979 (9)0.0182 (5)
H2A0.57300.36480.81320.022*
C3A0.8956 (4)0.2843 (2)0.77044 (9)0.0175 (5)
C4A0.9572 (5)0.3831 (2)0.72958 (10)0.0238 (6)
H4A0.85910.46780.72600.029*
C5A1.1606 (5)0.3570 (2)0.69452 (10)0.0253 (6)
H5A1.20010.42410.66650.030*
C6A1.3095 (5)0.2332 (2)0.69971 (10)0.0241 (6)
H6A1.44970.21690.67550.029*
C7A1.2534 (4)0.1345 (2)0.73997 (10)0.0222 (5)
H7A1.35550.05060.74400.027*
C8A1.0452 (4)0.1596 (2)0.77463 (9)0.0162 (5)
C9A0.4991 (4)0.1378 (2)0.88361 (9)0.0148 (5)
C10A0.2935 (4)0.2411 (2)0.89979 (10)0.0203 (5)
H10A0.29880.23720.94190.030*
H10B0.13280.22890.88870.030*
H10C0.31460.32440.87930.030*
C11A0.3697 (4)−0.1483 (2)0.95961 (9)0.0154 (5)
C12A0.6216 (4)−0.3666 (2)0.95906 (10)0.0194 (5)
H12A0.4719−0.39380.94960.023*
H12B0.6555−0.39541.00130.023*
C13A0.8407 (4)−0.4280 (2)0.92596 (11)0.0253 (6)
H13A0.8674−0.52100.93620.038*
H13B0.9899−0.40290.93610.038*
H13C0.8068−0.40000.88410.038*
S1B0.67836 (11)0.71828 (5)0.64398 (3)0.01964 (15)
S2B1.51802 (11)0.85218 (6)0.44850 (3)0.02281 (16)
N1B1.0500 (3)0.82960 (18)0.57598 (8)0.0180 (4)
N2B1.2186 (4)0.87090 (19)0.53790 (8)0.0187 (4)
H2NB1.300 (4)0.9225 (19)0.5457 (11)0.028 (8)*
N3B1.1624 (4)0.72808 (19)0.48311 (9)0.0205 (5)
H3NB1.040 (3)0.721 (2)0.5042 (9)0.022 (7)*
C1B0.8201 (4)0.8337 (2)0.66072 (10)0.0159 (5)
C2B0.7499 (4)0.8626 (2)0.71398 (9)0.0163 (5)
H2B0.80870.92340.73010.020*
C3B0.5797 (4)0.7926 (2)0.74310 (9)0.0161 (5)
C4B0.4694 (4)0.7975 (2)0.79772 (10)0.0207 (5)
H4B0.50740.85240.82100.025*
C5B0.3050 (4)0.7218 (2)0.81723 (11)0.0241 (6)
H5B0.22850.72580.85390.029*
C6B0.2499 (4)0.6392 (2)0.78363 (11)0.0256 (6)
H6B0.13800.58720.79790.031*
C7B0.3576 (4)0.6328 (2)0.72976 (11)0.0234 (6)
H7B0.31970.57710.70690.028*
C8B0.5215 (4)0.7090 (2)0.70985 (10)0.0179 (5)
C9B0.9933 (4)0.8839 (2)0.62066 (9)0.0156 (5)
C10B1.0962 (4)0.9905 (2)0.63256 (10)0.0204 (5)
H10D1.06491.06070.59880.031*
H10E1.27570.96020.64000.031*
H10F1.01541.02070.66670.031*
C11B1.2880 (4)0.8130 (2)0.49148 (9)0.0163 (5)
C12B1.1924 (5)0.6655 (2)0.43327 (12)0.0370 (7)
H12C1.36970.64410.42240.044*0.50
H12D1.09530.72190.39950.044*0.50
H12E1.21550.72860.40040.044*0.50
H12F1.03720.64500.42710.044*0.50
C1311.0968 (10)0.5437 (4)0.4516 (2)0.0281 (12)0.50
H13D0.91760.56670.45860.042*0.50
H13E1.18340.49280.48730.042*0.50
H13F1.12820.49390.42050.042*0.50
C1321.3847 (8)0.5534 (4)0.4312 (2)0.0265 (12)0.50
H13G1.54730.57190.43540.040*0.50
H13H1.37540.52710.39390.040*0.50
H13I1.36290.48460.46300.040*0.50

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S1A0.0177 (3)0.0162 (3)0.0184 (3)−0.0042 (2)0.0046 (2)−0.0031 (2)
S2A0.0159 (3)0.0207 (3)0.0252 (3)−0.0071 (2)0.0071 (3)−0.0033 (2)
N1A0.0121 (10)0.0206 (10)0.0135 (9)−0.0053 (8)0.0028 (8)−0.0022 (8)
N2A0.0129 (10)0.0169 (10)0.0190 (10)−0.0034 (8)0.0034 (8)−0.0042 (8)
N3A0.0145 (11)0.0188 (10)0.0180 (10)−0.0069 (8)0.0055 (9)−0.0011 (8)
C1A0.0115 (11)0.0185 (11)0.0149 (11)−0.0025 (9)−0.0003 (9)−0.0044 (9)
C2A0.0169 (12)0.0198 (12)0.0175 (12)−0.0041 (10)0.0010 (10)−0.0034 (9)
C3A0.0202 (13)0.0192 (11)0.0146 (11)−0.0078 (10)−0.0017 (10)−0.0026 (9)
C4A0.0294 (15)0.0218 (12)0.0206 (13)−0.0090 (11)0.0038 (11)−0.0015 (10)
C5A0.0333 (15)0.0294 (14)0.0180 (12)−0.0185 (12)0.0049 (11)−0.0028 (10)
C6A0.0246 (14)0.0380 (15)0.0162 (12)−0.0153 (12)0.0069 (11)−0.0120 (11)
C7A0.0215 (13)0.0277 (13)0.0209 (13)−0.0097 (11)0.0038 (11)−0.0088 (10)
C8A0.0205 (13)0.0189 (11)0.0123 (11)−0.0095 (10)0.0015 (10)−0.0050 (9)
C9A0.0134 (12)0.0183 (11)0.0124 (11)−0.0042 (9)−0.0022 (9)−0.0014 (9)
C10A0.0183 (13)0.0209 (12)0.0220 (13)−0.0058 (10)0.0054 (10)−0.0045 (10)
C11A0.0163 (12)0.0186 (11)0.0120 (11)−0.0052 (9)−0.0026 (9)−0.0026 (9)
C12A0.0212 (13)0.0154 (11)0.0196 (12)−0.0039 (10)0.0024 (10)0.0005 (9)
C13A0.0211 (13)0.0227 (13)0.0300 (14)−0.0013 (10)0.0028 (11)−0.0050 (11)
S1B0.0211 (3)0.0214 (3)0.0196 (3)−0.0081 (2)0.0061 (3)−0.0087 (2)
S2B0.0208 (3)0.0305 (3)0.0218 (3)−0.0125 (3)0.0100 (3)−0.0099 (3)
N1B0.0152 (10)0.0216 (10)0.0163 (10)−0.0047 (8)0.0034 (8)−0.0017 (8)
N2B0.0176 (11)0.0252 (11)0.0170 (10)−0.0100 (9)0.0050 (9)−0.0074 (9)
N3B0.0204 (12)0.0247 (11)0.0203 (11)−0.0109 (9)0.0112 (9)−0.0084 (9)
C1B0.0125 (12)0.0153 (11)0.0186 (12)−0.0003 (9)−0.0018 (10)−0.0036 (9)
C2B0.0152 (12)0.0193 (11)0.0145 (11)−0.0038 (9)0.0002 (9)−0.0039 (9)
C3B0.0130 (12)0.0168 (11)0.0157 (11)0.0002 (9)−0.0010 (9)−0.0008 (9)
C4B0.0204 (13)0.0255 (13)0.0145 (12)−0.0033 (10)0.0027 (10)−0.0027 (10)
C5B0.0191 (13)0.0280 (13)0.0196 (12)0.0006 (10)0.0041 (11)0.0009 (10)
C6B0.0183 (13)0.0212 (12)0.0315 (14)−0.0020 (10)0.0062 (11)0.0048 (11)
C7B0.0214 (13)0.0211 (12)0.0289 (14)−0.0070 (10)0.0051 (11)−0.0059 (10)
C8B0.0143 (12)0.0177 (11)0.0183 (12)0.0004 (9)0.0035 (10)−0.0007 (9)
C9B0.0126 (12)0.0195 (11)0.0136 (11)−0.0013 (9)−0.0020 (9)−0.0033 (9)
C10B0.0199 (13)0.0264 (13)0.0195 (12)−0.0118 (10)0.0066 (10)−0.0083 (10)
C11B0.0130 (12)0.0200 (12)0.0149 (11)−0.0018 (9)0.0011 (9)−0.0037 (9)
C12B0.0458 (18)0.0446 (17)0.0388 (16)−0.0330 (14)0.0295 (14)−0.0292 (14)
C1310.038 (3)0.025 (3)0.028 (3)−0.011 (2)0.005 (2)−0.015 (2)
C1320.027 (3)0.029 (3)0.021 (3)−0.001 (2)0.006 (2)−0.004 (2)

Geometric parameters (Å, °)

S1A—C8A1.741 (2)N1B—N2B1.365 (3)
S1A—C1A1.754 (2)N2B—C11B1.365 (3)
S2A—C11A1.683 (2)N2B—H2NB0.852 (10)
N1A—C9A1.291 (3)N3B—C11B1.334 (3)
N1A—N2A1.375 (3)N3B—C12B1.453 (3)
N2A—C11A1.360 (3)N3B—H3NB0.835 (10)
N2A—H2NA0.852 (10)C1B—C2B1.369 (3)
N3A—C11A1.337 (3)C1B—C9B1.449 (3)
N3A—C12A1.467 (3)C2B—C3B1.429 (3)
N3A—H3NA0.839 (10)C2B—H2B0.95
C1A—C2A1.363 (3)C3B—C4B1.406 (3)
C1A—C9A1.459 (3)C3B—C8B1.411 (3)
C2A—C3A1.434 (3)C4B—C5B1.384 (3)
C2A—H2A0.95C4B—H4B0.95
C3A—C4A1.402 (3)C5B—C6B1.400 (4)
C3A—C8A1.411 (3)C5B—H5B0.95
C4A—C5A1.380 (3)C6B—C7B1.386 (3)
C4A—H4A0.95C6B—H6B0.95
C5A—C6A1.399 (3)C7B—C8B1.387 (3)
C5A—H5A0.95C7B—H7B0.95
C6A—C7A1.381 (3)C9B—C10B1.493 (3)
C6A—H6A0.95C10B—H10D0.98
C7A—C8A1.393 (3)C10B—H10E0.98
C7A—H7A0.95C10B—H10F0.98
C9A—C10A1.502 (3)C12B—C1321.432 (4)
C10A—H10A0.98C12B—C1311.535 (4)
C10A—H10B0.98C12B—H12C0.99
C10A—H10C0.98C12B—H12D0.99
C12A—C13A1.511 (3)C12B—H12E0.96
C12A—H12A0.99C12B—H12F0.96
C12A—H12B0.99C131—H12F1.13
C13A—H13A0.98C131—H13D0.98
C13A—H13B0.98C131—H13E0.98
C13A—H13C0.98C131—H13F0.98
S1B—C8B1.745 (2)C132—H13G0.98
S1B—C1B1.750 (2)C132—H13H0.98
S2B—C11B1.683 (2)C132—H13I0.98
N1B—C9B1.298 (3)
C8A—S1A—C1A91.23 (11)C9B—C1B—S1B120.17 (17)
C9A—N1A—N2A118.26 (18)C1B—C2B—C3B113.6 (2)
C11A—N2A—N1A118.93 (18)C1B—C2B—H2B123.2
C11A—N2A—H2NA120.8 (18)C3B—C2B—H2B123.2
N1A—N2A—H2NA119.2 (18)C4B—C3B—C8B118.8 (2)
C11A—N3A—C12A123.92 (19)C4B—C3B—C2B129.2 (2)
C11A—N3A—H3NA117.9 (17)C8B—C3B—C2B111.9 (2)
C12A—N3A—H3NA117.6 (17)C5B—C4B—C3B119.5 (2)
C2A—C1A—C9A128.8 (2)C5B—C4B—H4B120.3
C2A—C1A—S1A112.27 (17)C3B—C4B—H4B120.3
C9A—C1A—S1A118.84 (16)C4B—C5B—C6B120.9 (2)
C1A—C2A—C3A113.2 (2)C4B—C5B—H5B119.6
C1A—C2A—H2A123.4C6B—C5B—H5B119.6
C3A—C2A—H2A123.4C7B—C6B—C5B120.5 (2)
C4A—C3A—C8A118.6 (2)C7B—C6B—H6B119.8
C4A—C3A—C2A129.4 (2)C5B—C6B—H6B119.8
C8A—C3A—C2A111.9 (2)C6B—C7B—C8B118.9 (2)
C5A—C4A—C3A119.9 (2)C6B—C7B—H7B120.6
C5A—C4A—H4A120.1C8B—C7B—H7B120.6
C3A—C4A—H4A120.1C7B—C8B—C3B121.5 (2)
C4A—C5A—C6A120.9 (2)C7B—C8B—S1B127.42 (19)
C4A—C5A—H5A119.5C3B—C8B—S1B111.11 (17)
C6A—C5A—H5A119.5N1B—C9B—C1B115.7 (2)
C7A—C6A—C5A120.2 (2)N1B—C9B—C10B124.4 (2)
C7A—C6A—H6A119.9C1B—C9B—C10B119.94 (19)
C5A—C6A—H6A119.9C9B—C10B—H10D109.5
C6A—C7A—C8A119.2 (2)C9B—C10B—H10E109.5
C6A—C7A—H7A120.4H10D—C10B—H10E109.5
C8A—C7A—H7A120.4C9B—C10B—H10F109.5
C7A—C8A—C3A121.2 (2)H10D—C10B—H10F109.5
C7A—C8A—S1A127.48 (18)H10E—C10B—H10F109.5
C3A—C8A—S1A111.36 (17)N3B—C11B—N2B116.2 (2)
N1A—C9A—C1A115.43 (19)N3B—C11B—S2B124.21 (18)
N1A—C9A—C10A125.1 (2)N2B—C11B—S2B119.61 (18)
C1A—C9A—C10A119.50 (19)C132—C12B—N3B122.0 (3)
C9A—C10A—H10A109.5C132—C12B—C13168.4 (3)
C9A—C10A—H10B109.5N3B—C12B—C131106.5 (3)
H10A—C10A—H10B109.5N3B—C12B—H12C110.4
C9A—C10A—H10C109.5C131—C12B—H12C110.4
H10A—C10A—H10C109.5C132—C12B—H12D125.7
H10B—C10A—H10C109.5N3B—C12B—H12D110.4
N3A—C11A—N2A116.3 (2)C131—C12B—H12D110.4
N3A—C11A—S2A123.46 (17)H12C—C12B—H12D108.6
N2A—C11A—S2A120.25 (17)C132—C12B—H12E106.6
N3A—C12A—C13A111.06 (19)N3B—C12B—H12E106.2
N3A—C12A—H12A109.4C131—C12B—H12E143.4
C13A—C12A—H12A109.4H12C—C12B—H12E72.4
N3A—C12A—H12B109.4C132—C12B—H12F107.0
C13A—C12A—H12B109.4N3B—C12B—H12F107.2
H12A—C12A—H12B108.0C131—C12B—H12F47.0
C12A—C13A—H13A109.5H12C—C12B—H12F140.9
C12A—C13A—H13B109.5H12D—C12B—H12F66.4
H13A—C13A—H13B109.5H12E—C12B—H12F106.9
C12A—C13A—H13C109.5C12B—C131—H13D109.5
H13A—C13A—H13C109.5H12F—C131—H13D76.5
H13B—C13A—H13C109.5C12B—C131—H13E109.5
C8B—S1B—C1B91.60 (11)H12F—C131—H13E141.6
C9B—N1B—N2B117.9 (2)C12B—C131—H13F109.5
C11B—N2B—N1B119.3 (2)H12F—C131—H13F103.3
C11B—N2B—H2NB118.7 (18)C12B—C132—H13G109.5
N1B—N2B—H2NB121.0 (18)C12B—C132—H13H109.5
C11B—N3B—C12B124.4 (2)H13G—C132—H13H109.5
C11B—N3B—H3NB117.9 (17)C12B—C132—H13I109.5
C12B—N3B—H3NB116.7 (17)H13G—C132—H13I109.5
C2B—C1B—C9B128.1 (2)H13H—C132—H13I109.5
C2B—C1B—S1B111.75 (18)
C9A—N1A—N2A—C11A174.7 (2)C8B—S1B—C1B—C2B0.07 (17)
C8A—S1A—C1A—C2A−0.36 (18)C8B—S1B—C1B—C9B178.56 (17)
C8A—S1A—C1A—C9A177.19 (18)C9B—C1B—C2B—C3B−178.3 (2)
C9A—C1A—C2A—C3A−176.5 (2)S1B—C1B—C2B—C3B0.1 (2)
S1A—C1A—C2A—C3A0.8 (3)C1B—C2B—C3B—C4B−179.9 (2)
C1A—C2A—C3A—C4A177.4 (2)C1B—C2B—C3B—C8B−0.2 (3)
C1A—C2A—C3A—C8A−0.9 (3)C8B—C3B—C4B—C5B−0.7 (3)
C8A—C3A—C4A—C5A0.1 (4)C2B—C3B—C4B—C5B179.0 (2)
C2A—C3A—C4A—C5A−178.1 (2)C3B—C4B—C5B—C6B0.9 (3)
C3A—C4A—C5A—C6A−1.0 (4)C4B—C5B—C6B—C7B−0.6 (3)
C4A—C5A—C6A—C7A0.5 (4)C5B—C6B—C7B—C8B0.3 (3)
C5A—C6A—C7A—C8A0.9 (4)C6B—C7B—C8B—C3B−0.2 (3)
C6A—C7A—C8A—C3A−1.8 (4)C6B—C7B—C8B—S1B−179.72 (17)
C6A—C7A—C8A—S1A177.30 (18)C4B—C3B—C8B—C7B0.4 (3)
C4A—C3A—C8A—C7A1.3 (3)C2B—C3B—C8B—C7B−179.4 (2)
C2A—C3A—C8A—C7A179.8 (2)C4B—C3B—C8B—S1B−179.99 (16)
C4A—C3A—C8A—S1A−177.92 (18)C2B—C3B—C8B—S1B0.2 (2)
C2A—C3A—C8A—S1A0.6 (3)C1B—S1B—C8B—C7B179.4 (2)
C1A—S1A—C8A—C7A−179.3 (2)C1B—S1B—C8B—C3B−0.18 (17)
C1A—S1A—C8A—C3A−0.14 (18)N2B—N1B—C9B—C1B−178.00 (18)
N2A—N1A—C9A—C1A−178.12 (18)N2B—N1B—C9B—C10B1.4 (3)
N2A—N1A—C9A—C10A1.3 (3)C2B—C1B—C9B—N1B172.1 (2)
C2A—C1A—C9A—N1A173.7 (2)S1B—C1B—C9B—N1B−6.1 (3)
S1A—C1A—C9A—N1A−3.4 (3)C2B—C1B—C9B—C10B−7.3 (3)
C2A—C1A—C9A—C10A−5.8 (4)S1B—C1B—C9B—C10B174.51 (16)
S1A—C1A—C9A—C10A177.12 (16)C12B—N3B—C11B—N2B174.0 (2)
C12A—N3A—C11A—N2A−179.3 (2)C12B—N3B—C11B—S2B−5.2 (3)
C12A—N3A—C11A—S2A0.3 (3)N1B—N2B—C11B—N3B7.4 (3)
N1A—N2A—C11A—N3A8.8 (3)N1B—N2B—C11B—S2B−173.36 (15)
N1A—N2A—C11A—S2A−170.77 (15)C11B—N3B—C12B—C13284.2 (4)
C11A—N3A—C12A—C13A168.7 (2)C11B—N3B—C12B—C131158.7 (3)
C9B—N1B—N2B—C11B177.9 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N3A—H3NA···N1A0.84 (1)2.27 (2)2.623 (3)106 (2)
N3B—H3NB···N1B0.83 (1)2.26 (2)2.627 (3)107 (2)
C10A—H10A···S2Ai0.982.843.374 (2)115
N2A—H2NA···S2Ai0.85 (1)2.81 (1)3.638 (2)164 (2)
C10B—H10D···S2Bii0.982.823.373 (2)117
C10A—H10B···Cg1iii0.982.713.577 (2)147
C10B—H10E···Cg2iv0.982.723.600 (2)150

Symmetry codes: (i) −x, −y, −z+2; (ii) −x+3, −y+2, −z+1; (iii) x+1, y, z; (iv) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2731).

References

  • Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst.37, 335–338.
  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2006). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chuev, I. I., Filipenko, O. S., Ryzhikov, V. G., Aldoshin, S. M. & Atovmyan, L. O. (1992). Izv. Akad. Nauk SSSR Ser. Khim. pp. 917–922.
  • Hunter, K. A. & Simpson, J. (1999). TITAN2000 University of Otago, New Zealand.
  • Işık, S., Köysal, Y., Özdemir, Z. & Bilgin, A. A. (2006). Acta Cryst. E62, o491–o493.
  • Kayed, S. F., Farina, Y., Kassim, M. & Simpson, J. (2008). Acta Cryst. E64, o1022–o1023. [PMC free article] [PubMed]
  • Lima, G. M. de, Neto, J. L., Beraldo, H., Siebald, H. G. L. & Duncalf, D. J. (2002). J. Mol. Struct.604, 287–291.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sousa, G. F. de, Manso, L. C. C., Lang, E. S., Gatto, C. C. & Mahieu, B. (2007). J. Mol. Struct.826, 185–191.
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Westrip, S. P. (2009). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography