PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 January 1; 65(Pt 1): o179.
Published online 2008 December 20. doi:  10.1107/S1600536808040300
PMCID: PMC2968089

1-(1,3-Benzodioxol-5-yl)butan-1-one

Abstract

In the mol­ecule of the title compound, C11H12O3, the dioxole ring adopts an envelope conformation. In the crystal structure, weak inter­molecular C—H(...)O hydrogen bonds link the mol­ecules into chains.

Related literature

For general background, see: Nichols (1986 [triangle]). For a related structure, see: Zhu (2003 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o179-scheme1.jpg

Experimental

Crystal data

  • C11H12O3
  • M r = 192.21
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o179-efi1.jpg
  • a = 11.944 (2) Å
  • b = 11.143 (2) Å
  • c = 7.4600 (15) Å
  • β = 100.69 (3)°
  • V = 975.6 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 298 (2) K
  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.972, T max = 0.991
  • 1869 measured reflections
  • 1775 independent reflections
  • 1166 reflections with I > 2σ(I)
  • R int = 0.045
  • 3 standard reflections frequency: 120 min intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.070
  • wR(F 2) = 0.174
  • S = 1.01
  • 1775 reflections
  • 127 parameters
  • H-atom parameters constrained
  • Δρmax = 0.27 e Å−3
  • Δρmin = −0.30 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1985 [triangle]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]) and PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808040300/hk2590sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808040300/hk2590Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Science Fundamental Research Fund of the Education Department, Jiangsu Province (grant No. 06KJB150024). The authors thank the Center of Testing and Analysis, Nanjing University, for data collection.

supplementary crystallographic information

Comment

The title compound is an important medicine intermediate used to synthesize 3,4-methylenedioxy-alpha-ethyl-N-methylphenethylamine, which is a lesser-known hallucinogenic phenethylamine (Nichols, 1986). We report herein its crystal structure, which is of interest to us in the field.

In the molecule of title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Ring B (C5–C10) is, of course, planar, while ring A (O2/O3/C7/C8/C11) adopts envelope conformation with C11 atom displaced by 0.147 (3) Å from the plane of the other ring atoms. Atoms O1, C3 and C4 are -0.032 (3), 0.050 (3) and 0.044 (3) Å away from the plane of the benzene ring.

In the crystal structure, weak intermolecular C—H···O hydrogen bonds (Table 1) link the molecules into chains (Fig. 2), in which they may be effective in the stabilization of the structure.

Experimental

The title compound was synthesized according to a literature method (Zhu, 2003). Crystals suitable for X-ray analysis were obtained by dissolving the title compound (0.3 g) in ethanol (25 ml), and evaporating the solvent slowly at room temperature for about 4 d.

Refinement

H atoms were positioned geometrically, with C—H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme.
Fig. 2.
A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

C11H12O3F(000) = 408
Mr = 192.21Dx = 1.309 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 11.944 (2) Åθ = 9–12°
b = 11.143 (2) ŵ = 0.10 mm1
c = 7.4600 (15) ÅT = 298 K
β = 100.69 (3)°Block, colourless
V = 975.6 (3) Å30.30 × 0.20 × 0.10 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer1166 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.045
graphiteθmax = 25.3°, θmin = 1.7°
ω/2θ scansh = 0→14
Absorption correction: ψ scan (North et al., 1968)k = 0→13
Tmin = 0.972, Tmax = 0.991l = −8→8
1869 measured reflections3 standard reflections every 120 min
1775 independent reflections intensity decay: 1%

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.174H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.05P)2 + 2.1P] where P = (Fo2 + 2Fc2)/3
1775 reflections(Δ/σ)max < 0.001
127 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = −0.30 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.4098 (2)0.2566 (2)0.9257 (3)0.0479 (7)
O20.8478 (2)0.2368 (2)1.0244 (4)0.0521 (7)
O30.8912 (2)0.0624 (2)0.8880 (3)0.0475 (7)
C10.1275 (3)0.0544 (4)0.6397 (6)0.0625 (12)
H1A0.05520.09300.63440.094*
H1B0.1286−0.01980.70550.094*
H1C0.13940.03840.51810.094*
C20.2211 (3)0.1353 (3)0.7358 (6)0.0486 (10)
H2A0.21720.21100.67080.058*
H2B0.20750.15180.85760.058*
C30.3397 (3)0.0849 (3)0.7510 (4)0.0347 (8)
H3A0.35430.06980.62930.042*
H3B0.34370.00860.81450.042*
C40.4319 (3)0.1669 (3)0.8506 (4)0.0284 (7)
C50.5527 (2)0.1323 (3)0.8527 (4)0.0268 (7)
C60.6389 (3)0.2119 (3)0.9436 (4)0.0303 (7)
H6A0.62110.28191.00020.036*
C70.7489 (3)0.1792 (3)0.9424 (4)0.0362 (8)
C80.7769 (3)0.0757 (3)0.8658 (4)0.0342 (8)
C90.6943 (3)−0.0028 (3)0.7756 (4)0.0332 (8)
H9A0.7136−0.07220.71900.040*
C100.5818 (3)0.0280 (3)0.7748 (4)0.0301 (7)
H10A0.5243−0.02350.71990.036*
C110.9378 (3)0.1710 (3)0.9731 (6)0.0503 (10)
H11A0.99520.15281.07960.060*
H11B0.97310.21750.88870.060*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0483 (15)0.0414 (15)0.0506 (16)0.0091 (11)0.0003 (12)−0.0123 (13)
O20.0351 (13)0.0524 (16)0.0651 (18)−0.0039 (12)−0.0004 (12)−0.0165 (14)
O30.0378 (14)0.0530 (16)0.0520 (16)0.0046 (11)0.0089 (11)−0.0057 (13)
C10.039 (2)0.078 (3)0.066 (3)−0.006 (2)−0.0016 (19)−0.017 (2)
C20.048 (2)0.041 (2)0.053 (2)−0.0024 (17)−0.0016 (17)−0.0038 (18)
C30.0429 (19)0.0340 (18)0.0241 (17)−0.0047 (14)−0.0021 (14)−0.0017 (14)
C40.0428 (18)0.0209 (15)0.0211 (15)0.0085 (13)0.0051 (13)−0.0006 (13)
C50.0310 (16)0.0301 (17)0.0180 (15)−0.0011 (13)0.0015 (12)0.0033 (13)
C60.0362 (17)0.0267 (16)0.0292 (17)0.0033 (13)0.0095 (13)−0.0073 (13)
C70.0361 (18)0.0399 (19)0.0306 (18)−0.0056 (15)0.0016 (14)−0.0005 (15)
C80.0432 (19)0.0326 (18)0.0262 (17)0.0066 (14)0.0043 (14)−0.0014 (14)
C90.0402 (19)0.0294 (17)0.0309 (17)0.0037 (14)0.0093 (14)−0.0076 (14)
C100.0425 (19)0.0259 (16)0.0207 (15)−0.0017 (13)0.0030 (13)−0.0028 (13)
C110.041 (2)0.053 (2)0.057 (2)−0.0099 (18)0.0085 (17)−0.004 (2)

Geometric parameters (Å, °)

O1—C41.200 (4)C3—H3B0.9700
O2—C71.384 (4)C4—C51.491 (4)
O2—C111.410 (4)C5—C101.372 (4)
O3—C81.353 (4)C5—C61.432 (4)
O3—C111.431 (4)C6—C71.364 (4)
C1—C21.510 (5)C6—H6A0.9300
C1—H1A0.9600C7—C81.356 (5)
C1—H1B0.9600C8—C91.395 (4)
C1—H1C0.9600C9—C101.385 (4)
C2—C31.508 (5)C9—H9A0.9300
C2—H2A0.9700C10—H10A0.9300
C2—H2B0.9700C11—H11A0.9700
C3—C41.515 (4)C11—H11B0.9700
C3—H3A0.9700
C7—O2—C11105.7 (3)C10—C5—C4122.4 (3)
C8—O3—C11105.2 (3)C6—C5—C4117.0 (3)
C2—C1—H1A109.5C7—C6—C5116.1 (3)
C2—C1—H1B109.5C7—C6—H6A122.0
H1A—C1—H1B109.5C5—C6—H6A122.0
C2—C1—H1C109.5C8—C7—C6122.9 (3)
H1A—C1—H1C109.5C8—C7—O2108.9 (3)
H1B—C1—H1C109.5C6—C7—O2128.1 (3)
C3—C2—C1114.6 (3)O3—C8—C7111.3 (3)
C3—C2—H2A108.6O3—C8—C9126.7 (3)
C1—C2—H2A108.6C7—C8—C9121.9 (3)
C3—C2—H2B108.6C10—C9—C8116.4 (3)
C1—C2—H2B108.6C10—C9—H9A121.8
H2A—C2—H2B107.6C8—C9—H9A121.8
C2—C3—C4113.5 (3)C5—C10—C9122.0 (3)
C2—C3—H3A108.9C5—C10—H10A119.0
C4—C3—H3A108.9C9—C10—H10A119.0
C2—C3—H3B108.9O2—C11—O3107.9 (3)
C4—C3—H3B108.9O2—C11—H11A110.1
H3A—C3—H3B107.7O3—C11—H11A110.1
O1—C4—C5120.5 (3)O2—C11—H11B110.1
O1—C4—C3121.9 (3)O3—C11—H11B110.1
C5—C4—C3117.6 (3)H11A—C11—H11B108.4
C10—C5—C6120.6 (3)
C1—C2—C3—C4−179.1 (3)C11—O3—C8—C7−4.7 (4)
C2—C3—C4—O17.5 (5)C11—O3—C8—C9174.6 (3)
C2—C3—C4—C5−172.6 (3)C6—C7—C8—O3−178.0 (3)
O1—C4—C5—C10177.3 (3)O2—C7—C8—O3−1.8 (4)
C3—C4—C5—C10−2.6 (4)C6—C7—C8—C92.7 (5)
O1—C4—C5—C6−1.5 (4)O2—C7—C8—C9178.9 (3)
C3—C4—C5—C6178.6 (3)O3—C8—C9—C10178.2 (3)
C10—C5—C6—C71.8 (4)C7—C8—C9—C10−2.6 (5)
C4—C5—C6—C7−179.4 (3)C6—C5—C10—C9−2.0 (5)
C5—C6—C7—C8−2.2 (5)C4—C5—C10—C9179.3 (3)
C5—C6—C7—O2−177.6 (3)C8—C9—C10—C52.3 (5)
C11—O2—C7—C87.6 (4)C7—O2—C11—O3−10.4 (4)
C11—O2—C7—C6−176.5 (4)C8—O3—C11—O29.3 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C9—H9A···O1i0.932.533.209 (4)130

Symmetry codes: (i) −x+1, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2590).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Enraf–Nonius (1985). CAD-4 Software Enraf–Nonius, Delft. The Netherlands.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • Nichols, D. E. (1986). J. Psychoactive Drugs, 18, 305–313. [PubMed]
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Zhu, Z. F. (2003). Huaxue Yanjiu Yu Yingyong, 15, 417–418.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography