PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 January 1; 65(Pt 1): o178.
Published online 2008 December 20. doi:  10.1107/S1600536808039718
PMCID: PMC2968088

4,4′-Dichloro-N,N′-(o-phenyl­ene)dibenzene­sulfonamide

Abstract

The title compound, C18H14Cl2N2O4S2, is a diamine that is a precursor to a quinonoid bidentate redox-active ligand. The dihedral angles between the central phenyl ring and the end rings are 87.5(1) and 60.7(1)°, while the two end rings make a dihedral angle of 82.5(1)°. The crystal structure is stabilized by two weak inter­molecular N—H(...)O hydrogen bonds, as well as one intra­molecular C—H(...)O and one N—H(...)N hydrogen bond.

Related literature

For the synthesis of related substituted o-phenyl­enediamines, see: Massacret et al. (1999 [triangle]). For background to the use of substituted o-benzoquinones as ligands, see: Masui & Lever (1993 [triangle]); Kalinina et al. (2008 [triangle]) and references therein.

An external file that holds a picture, illustration, etc.
Object name is e-65-0o178-scheme1.jpg

Experimental

Crystal data

  • C18H14Cl2N2O4S2
  • M r = 457.33
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o178-efi1.jpg
  • a = 7.7225 (4) Å
  • b = 11.1920 (4) Å
  • c = 11.9325 (5) Å
  • α = 109.669 (2)°
  • β = 91.420 (2)°
  • γ = 101.782 (2)°
  • V = 945.79 (7) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.59 mm−1
  • T = 150 (1) K
  • 0.40 × 0.36 × 0.30 mm

Data collection

  • Bruker–Nonius KappaCCD diffractometer
  • Absorption correction: multi-scan (SORTAV; Blessing, 1995 [triangle]) T min = 0.748, T max = 0.876
  • 8650 measured reflections
  • 4235 independent reflections
  • 3386 reflections with I > 2σ(I)
  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.122
  • S = 1.08
  • 4235 reflections
  • 261 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.48 e Å−3
  • Δρmin = −0.69 e Å−3

Data collection: COLLECT (Nonius, 2002 [triangle]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808039718/bx2184sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808039718/bx2184Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Dr Alan J. Lough for acquiring the X-ray diffraction data and for helpful discussions. Financial support for this work was provided by the Natural Sciences and Engineering Research Council of Canada (NSERC). CD thanks NSERC for a post-graduate scholarship.

supplementary crystallographic information

Comment

Benzoquinonediimine compounds have been extensively studied as ligands in metal complex systems (Kalinina et al., 2008). As free ligands, they exist in the diamine form, however, they have the ability to bind to a metal in one of three oxidation states: as o-phenylenediamine, its one-electron oxidized o-semiquinonediiminate, or its doubly oxidized and strongly π-accepting o-benzoquinonediimine form. In addition to being redox-active, these ligands also often exhibit non-innocent behaviour. Ruthenium complexes of o-benzoquinonediimines possess highly covalent bonds. The extent of electronic coupling between the metal and diimine ligand can be tuned by using substituented o-benzoquinones (Masui & Lever, 1993, and Kalinina et al., 2008). We present here the synthesis and crystal structure of the title compound (I). In (I) (Fig. 1), highly electron-withdrawing groups (p-chlorophenylsulfonyl, PCPS) are bound to the amine N atoms, and are expected to exhibit a greater covalent metal-benzoquinonediimine ligand bond character than the unsubstituted diimine. The C1—N1—S1—C7 dihedral angle is 81.0 (2) °, while the C2—N2—S2—C13 dihedral angle is only 68.6 (2)°. The p-chlorophenyl rings are essentially perpendicular to the N—S bond, likely due to steric hindrance and intermolecular H bonding between the ortho H atoms, and the sulfonyl O atoms (Fig. 1). The crystal structure is stabilized by two weak intermolecular N—H···O hydrogen bonds (Fig. 2), as well as three intramolecular C—H···O and one N—H···N hydrogen bonds which increases the stability of the crystal, (Table 1). The bonds parameters are similar to those in the other arylsulfonamides.

Experimental

(I) was synthesized for the first time according to methods described by Massacret et al., 1999, using p-chlorophenylsulfonyl chloride (10 mmol) as the arenesulfonyl chloride. o-phenylenediamine (540 mg, 5 mmol) was twice sublimed under reduced pressure prior to use. After purification, (I) was dissolved in a minimal amount of ethanol, and then added to an aqueous solution of CuCl2 (20 ml, 0.15 M). Colorless block-like crystals suitable for x-ray diffraction studies were obtained after allowing the solution to stand for 2 weeks.

Refinement

All H atoms attached to C atoms were added in calculated locations and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C). Both H atoms attached to N atoms were located in the electron-density difference map, with Uiso(H) = 1.2Ueq(N).

Figures

Fig. 1.
A view of (I) showing the molecular structure and intramolecular H bonding present. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
Crystal packing diagram of (I) showing the intermolecular H bonds present. H atoms not involved in H bonding are not shown. Displacement ellipsoids are drawn at the 30% probability level.

Crystal data

C18H14Cl2N2O4S2Z = 2
Mr = 457.33F(000) = 468
Triclinic, P1Dx = 1.606 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7225 (4) ÅCell parameters from 4103 reflections
b = 11.1920 (4) Åθ = 2.6–27.5°
c = 11.9325 (5) ŵ = 0.59 mm1
α = 109.669 (2)°T = 150 K
β = 91.420 (2)°Prism, colourless
γ = 101.782 (2)°0.40 × 0.36 × 0.30 mm
V = 945.79 (7) Å3

Data collection

Bruker–Nonius KappaCCD diffractometer4235 independent reflections
Radiation source: fine-focus sealed tube3386 reflections with I > 2σ(I)
graphiteRint = 0.032
[var phi] scans and ω scans with κ offsetsθmax = 27.5°, θmin = 2.7°
Absorption correction: multi-scan (SORTAV; Blessing, 1995)h = −10→9
Tmin = 0.748, Tmax = 0.876k = −14→14
8650 measured reflectionsl = −14→15

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.08w = 1/[σ2(Fo2) + (0.06P)2 + 0.6434P] where P = (Fo2 + 2Fc2)/3
4235 reflections(Δ/σ)max < 0.001
261 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = −0.69 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.1732 (3)0.8391 (2)0.77764 (19)0.0171 (4)
C2−0.0029 (3)0.8152 (2)0.72753 (19)0.0171 (4)
C3−0.1000 (3)0.9105 (2)0.7632 (2)0.0222 (5)
H3−0.21780.89350.72730.027*
C4−0.0274 (3)1.0303 (2)0.8506 (2)0.0262 (5)
H4−0.09401.09570.87440.031*
C50.1440 (3)1.0528 (2)0.9026 (2)0.0257 (5)
H50.19341.13330.96460.031*
C60.2444 (3)0.9599 (2)0.8657 (2)0.0225 (5)
H60.36300.97850.90080.027*
C70.3601 (3)0.6325 (2)0.8929 (2)0.0195 (5)
C80.3196 (3)0.4973 (2)0.8469 (2)0.0270 (5)
H80.33920.45240.76690.032*
C90.2500 (4)0.4285 (3)0.9191 (2)0.0314 (6)
H90.22200.33600.88910.038*
C100.2220 (3)0.4956 (3)1.0349 (2)0.0284 (6)
C110.2637 (4)0.6307 (3)1.0819 (2)0.0310 (6)
H110.24480.67521.16220.037*
C120.3334 (3)0.7000 (2)1.0100 (2)0.0266 (5)
H120.36250.79251.04050.032*
C13−0.2243 (3)0.7466 (2)0.45683 (19)0.0189 (4)
C14−0.4080 (3)0.7072 (2)0.4534 (2)0.0210 (5)
H14−0.45810.63780.48010.025*
C15−0.5169 (3)0.7697 (2)0.4109 (2)0.0225 (5)
H15−0.64250.74400.40780.027*
C16−0.4392 (3)0.8706 (2)0.3730 (2)0.0236 (5)
C17−0.2571 (3)0.9119 (2)0.3774 (2)0.0264 (5)
H17−0.20770.98260.35230.032*
C18−0.1476 (3)0.8486 (2)0.4190 (2)0.0233 (5)
H18−0.02210.87450.42170.028*
N10.2723 (3)0.7422 (2)0.73182 (17)0.0203 (4)
H10.222 (4)0.673 (3)0.672 (3)0.024*
N2−0.0870 (3)0.68766 (18)0.64404 (17)0.0191 (4)
H2−0.188 (4)0.654 (3)0.660 (2)0.023*
O10.5452 (2)0.84388 (16)0.87507 (14)0.0235 (4)
O20.5228 (2)0.63638 (16)0.70620 (14)0.0232 (4)
O30.0908 (2)0.70716 (18)0.48023 (15)0.0289 (4)
O4−0.1729 (2)0.52320 (16)0.44441 (16)0.0311 (4)
S10.44267 (7)0.71968 (5)0.79949 (5)0.01842 (15)
S2−0.08688 (7)0.65782 (5)0.50003 (5)0.02006 (15)
Cl10.13235 (9)0.40953 (8)1.12463 (7)0.0420 (2)
Cl2−0.57712 (9)0.94836 (6)0.31859 (6)0.03448 (18)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0178 (11)0.0206 (11)0.0154 (10)0.0057 (9)0.0010 (8)0.0087 (9)
C20.0169 (11)0.0195 (11)0.0155 (10)0.0034 (9)0.0013 (8)0.0072 (9)
C30.0196 (11)0.0263 (12)0.0237 (12)0.0074 (10)0.0014 (9)0.0111 (10)
C40.0310 (13)0.0252 (12)0.0241 (12)0.0123 (11)0.0056 (10)0.0073 (10)
C50.0331 (14)0.0221 (12)0.0188 (11)0.0067 (10)−0.0031 (10)0.0032 (10)
C60.0243 (12)0.0210 (11)0.0196 (11)0.0035 (9)−0.0048 (9)0.0051 (9)
C70.0163 (11)0.0256 (12)0.0180 (11)0.0072 (9)−0.0012 (8)0.0080 (9)
C80.0342 (14)0.0255 (12)0.0223 (12)0.0102 (11)0.0037 (10)0.0075 (10)
C90.0379 (15)0.0261 (13)0.0343 (14)0.0084 (11)0.0036 (12)0.0152 (12)
C100.0251 (13)0.0389 (15)0.0296 (13)0.0096 (11)0.0007 (10)0.0216 (12)
C110.0324 (14)0.0425 (15)0.0190 (12)0.0094 (12)0.0044 (10)0.0111 (11)
C120.0285 (13)0.0278 (13)0.0221 (12)0.0066 (11)0.0007 (10)0.0070 (10)
C130.0195 (11)0.0224 (11)0.0141 (10)0.0064 (9)−0.0012 (8)0.0046 (9)
C140.0193 (11)0.0251 (12)0.0205 (11)0.0063 (9)0.0027 (9)0.0096 (9)
C150.0181 (11)0.0296 (13)0.0212 (11)0.0089 (10)0.0029 (9)0.0086 (10)
C160.0312 (13)0.0268 (12)0.0152 (11)0.0162 (11)−0.0017 (9)0.0052 (9)
C170.0319 (14)0.0242 (12)0.0243 (12)0.0032 (10)−0.0019 (10)0.0120 (10)
C180.0199 (12)0.0268 (12)0.0226 (12)0.0023 (10)−0.0006 (9)0.0096 (10)
N10.0183 (10)0.0222 (10)0.0185 (9)0.0057 (8)−0.0048 (8)0.0046 (8)
N20.0154 (9)0.0202 (10)0.0208 (10)0.0005 (8)−0.0030 (8)0.0084 (8)
O10.0170 (8)0.0242 (9)0.0245 (8)−0.0009 (7)−0.0062 (7)0.0062 (7)
O20.0180 (8)0.0303 (9)0.0220 (8)0.0080 (7)0.0014 (6)0.0087 (7)
O30.0194 (9)0.0431 (11)0.0265 (9)0.0115 (8)0.0040 (7)0.0126 (8)
O40.0343 (10)0.0182 (8)0.0327 (10)0.0087 (8)−0.0144 (8)−0.0017 (7)
S10.0146 (3)0.0234 (3)0.0175 (3)0.0048 (2)−0.0017 (2)0.0074 (2)
S20.0180 (3)0.0221 (3)0.0189 (3)0.0076 (2)−0.0027 (2)0.0043 (2)
Cl10.0365 (4)0.0621 (5)0.0440 (4)0.0103 (3)0.0061 (3)0.0403 (4)
Cl20.0453 (4)0.0365 (4)0.0275 (3)0.0237 (3)−0.0036 (3)0.0107 (3)

Geometric parameters (Å, °)

C1—C61.395 (3)C11—H110.9500
C1—C21.408 (3)C12—H120.9500
C1—N11.422 (3)C13—C141.392 (3)
C2—C31.385 (3)C13—C181.393 (3)
C2—N21.443 (3)C13—S21.769 (2)
C3—C41.387 (3)C14—C151.382 (3)
C3—H30.9500C14—H140.9500
C4—C51.385 (4)C15—C161.386 (3)
C4—H40.9500C15—H150.9500
C5—C61.383 (3)C16—C171.381 (4)
C5—H50.9500C16—Cl21.743 (2)
C6—H60.9500C17—C181.387 (3)
C7—C81.388 (3)C17—H170.9500
C7—C121.390 (3)C18—H180.9500
C7—S11.764 (2)N1—S11.6329 (18)
C8—C91.387 (3)N1—H10.87 (3)
C8—H80.9500N2—S21.637 (2)
C9—C101.380 (4)N2—H20.85 (3)
C9—H90.9500O1—S11.4296 (17)
C10—C111.388 (4)O2—S11.4359 (17)
C10—Cl11.735 (3)O3—S21.4278 (18)
C11—C121.388 (4)O4—S21.4312 (17)
C6—C1—C2118.0 (2)C14—C13—C18121.3 (2)
C6—C1—N1123.3 (2)C14—C13—S2119.09 (17)
C2—C1—N1118.56 (19)C18—C13—S2119.43 (18)
C3—C2—C1120.5 (2)C15—C14—C13119.5 (2)
C3—C2—N2119.54 (19)C15—C14—H14120.3
C1—C2—N2119.79 (19)C13—C14—H14120.3
C2—C3—C4120.8 (2)C14—C15—C16118.7 (2)
C2—C3—H3119.6C14—C15—H15120.6
C4—C3—H3119.6C16—C15—H15120.6
C5—C4—C3118.7 (2)C17—C16—C15122.4 (2)
C5—C4—H4120.6C17—C16—Cl2119.05 (19)
C3—C4—H4120.6C15—C16—Cl2118.53 (19)
C6—C5—C4121.1 (2)C16—C17—C18119.0 (2)
C6—C5—H5119.4C16—C17—H17120.5
C4—C5—H5119.4C18—C17—H17120.5
C5—C6—C1120.7 (2)C17—C18—C13119.1 (2)
C5—C6—H6119.6C17—C18—H18120.5
C1—C6—H6119.6C13—C18—H18120.5
C8—C7—C12121.3 (2)C1—N1—S1127.72 (16)
C8—C7—S1119.10 (18)C1—N1—H1117.6 (18)
C12—C7—S1119.63 (18)S1—N1—H1112.0 (18)
C9—C8—C7119.2 (2)C2—N2—S2119.94 (15)
C9—C8—H8120.4C2—N2—H2115.3 (19)
C7—C8—H8120.4S2—N2—H2110.4 (18)
C10—C9—C8119.5 (2)O1—S1—O2119.90 (10)
C10—C9—H9120.3O1—S1—N1108.49 (10)
C8—C9—H9120.3O2—S1—N1105.21 (10)
C9—C10—C11121.6 (2)O1—S1—C7107.30 (10)
C9—C10—Cl1119.4 (2)O2—S1—C7107.80 (11)
C11—C10—Cl1119.0 (2)N1—S1—C7107.61 (10)
C12—C11—C10119.1 (2)O3—S2—O4121.51 (12)
C12—C11—H11120.4O3—S2—N2106.60 (10)
C10—C11—H11120.4O4—S2—N2105.45 (11)
C11—C12—C7119.3 (2)O3—S2—C13107.47 (11)
C11—C12—H12120.3O4—S2—C13106.22 (10)
C7—C12—H12120.3N2—S2—C13109.20 (10)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.87 (3)2.12 (3)2.936 (3)157 (2)
N2—H2···O2ii0.85 (3)2.30 (3)3.107 (3)159 (2)
N1—H1···N20.87 (3)2.45 (3)2.811 (3)106 (2)
C6—H6···O10.952.222.900 (3)128
C8—H8···O20.952.582.931 (3)103
C18—H18···O30.952.502.887 (3)104

Symmetry codes: (i) −x, −y+1, −z+1; (ii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2184).

References

  • Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Kalinina, D., Dares, C., Kaluarachchi, H., Potvin, P. G. & Lever, A. B. P. (2008). Inorg. Chem.47, 10110–10126. [PubMed]
  • Massacret, M., Lhoste, P. & Sinou, D. (1999). Eur. J. Org. Chem.10, 129–134.
  • Masui, H. & Lever, A. B. P. (1993). Inorg. Chem.32, 2199–2201.
  • Nonius (2002). COLLECT Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography