PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 January 1; 65(Pt 1): o176.
Published online 2008 December 20. doi:  10.1107/S1600536808040257
PMCID: PMC2968086

1-(1,3-Benzodioxol-5-yl)pentan-1-one

Abstract

In the mol­ecule of title compound, C12H14O3, the benzodioxole ring system is essentially planar. In the crystal structure, weak inter­molecular C—H(...)O hydrogen bonds link mol­ecules into chains along the c axis, and π–π contacts between dioxole rings and between dioxole and benzene rings of the benzodioxole ring systems [centroid–centroid distances 3.702 (3) and 3.903 (3) Å] may further stabilize the structure. Two C—H(...)π inter­actions are also found.

Related literature

For general background, see: Koeppe et al. (1969 [triangle]). For a related structure, see: May et al. (2000 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]);

An external file that holds a picture, illustration, etc.
Object name is e-65-0o176-scheme1.jpg

Experimental

Crystal data

  • C12H14O3
  • M r = 206.23
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o176-efi1.jpg
  • a = 6.7940 (14) Å
  • b = 12.960 (3) Å
  • c = 12.244 (2) Å
  • β = 93.46 (3)°
  • V = 1076.1 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 298 (2) K
  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.973, T max = 0.991
  • 2133 measured reflections
  • 1961 independent reflections
  • 1079 reflections with I > 2σ(I)
  • R int = 0.031
  • 3 standard reflections frequency: 120 min intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.068
  • wR(F 2) = 0.171
  • S = 1.00
  • 1961 reflections
  • 136 parameters
  • H-atom parameters constrained
  • Δρmax = 0.19 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1985 [triangle]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]) and PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808040257/hk2587sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808040257/hk2587Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Science Fundamental Research Fund of the Education Department, Jiangsu Province (grant No. 06KJB150024). The authors thank the Center of Testing and Analysis, Nanjing University, for data collection.

supplementary crystallographic information

Comment

The title compound is an important medicine intermediate used to synthesize methylenedioxypyrovalerone (Koeppe et al., 1969). As part of our studies in this area, we report herein its crystal structure.

In the molecule of title compound (Fig 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (O2/O3/C9/C10/C12) and B (C6-C11) are, of course, planar, and the dihedral angle between them is A/B = 0.56 (3)°. So, they are also coplanar. Atoms O1, C5 and C4 are 0.011 (3), -0.049 (3) and -0.119 (3) Å away from the plane of the benzodioxole ring system.

In the crystal structure, weak intermolecular C-H···O hydrogen bonds (Table 1) link the molecules into chains along the c axis (Fig. 2), in which they may be effective in the stabilization of the structure. The π-π contacts between the dioxole rings and the dioxole and benzene rings of the benzodioxole ring systems, Cg1—Cg1i and Cg1—Cg2i [symmetry code: (i) 1 - x, 1 - y, -z where Cg1 and Cg2 are centroids of the rings A (O2/O3/C9/C10/C12) and B (C6-C11), respectively] may further stabilize the structure, with centroid-centroid distances of 3.702 (3) Å and 3.903 (3) Å. There also exist two C–H···π interactions (Table 1).

Experimental

The title compound was synthesized according to a literature method (May et al., 2000). Crystals suitable for X-ray analysis were obtained by dissolving the title compound (0.2 g) in methanol (25 ml), and evaporating the solvent slowly at room temperature for about 7 d.

Refinement

H atoms were positioned geometrically, with C-H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme.
Fig. 2.
A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

C12H14O3F(000) = 440
Mr = 206.23Dx = 1.273 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 6.7940 (14) Åθ = 9–12°
b = 12.960 (3) ŵ = 0.09 mm1
c = 12.244 (2) ÅT = 298 K
β = 93.46 (3)°Needle, colorless
V = 1076.1 (4) Å30.30 × 0.20 × 0.10 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer1079 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
graphiteθmax = 25.3°, θmin = 2.3°
ω/2θ scansh = 0→8
Absorption correction: ψ scan (North et al., 1968)k = 0→15
Tmin = 0.973, Tmax = 0.991l = −14→14
2133 measured reflections3 standard reflections every 120 min
1961 independent reflections intensity decay: 1%

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.171H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.06P)2 + 0.6P] where P = (Fo2 + 2Fc2)/3
1961 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = −0.20 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.0098 (4)0.8069 (2)1.06817 (19)0.0789 (9)
O20.7749 (3)0.5827 (2)0.94774 (18)0.0650 (7)
O30.6590 (4)0.6096 (2)1.11889 (18)0.0666 (8)
C1−0.4973 (6)1.0228 (4)0.8325 (3)0.0911 (14)
H1A−0.56081.04660.76500.137*
H1B−0.44671.08090.87410.137*
H1C−0.59090.98640.87380.137*
C2−0.3317 (5)0.9524 (3)0.8088 (3)0.0678 (11)
H2A−0.24160.98940.76440.081*
H2B−0.38490.89510.76550.081*
C3−0.2171 (5)0.9099 (3)0.9067 (3)0.0589 (9)
H3A−0.30540.86990.94950.071*
H3B−0.16800.96700.95190.071*
C4−0.0454 (5)0.8428 (3)0.8797 (3)0.0567 (9)
H4A−0.09470.78660.83330.068*
H4B0.04350.88330.83790.068*
C50.0698 (5)0.7978 (3)0.9768 (3)0.0519 (9)
C60.2532 (5)0.7393 (2)0.9607 (2)0.0458 (8)
C70.3230 (5)0.7220 (3)0.8582 (2)0.0507 (9)
H7A0.25190.74720.79660.061*
C80.4974 (5)0.6678 (3)0.8456 (3)0.0566 (9)
H8A0.54210.65460.77660.068*
C90.5996 (5)0.6350 (3)0.9378 (3)0.0501 (8)
C100.5302 (5)0.6509 (3)1.0409 (2)0.0503 (8)
C110.3604 (5)0.7021 (3)1.0545 (2)0.0514 (9)
H11A0.31550.71251.12390.062*
C120.8125 (5)0.5645 (3)1.0614 (3)0.0627 (10)
H12A0.81830.49081.07540.075*
H12B0.93820.59451.08600.075*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0840 (19)0.098 (2)0.0557 (15)0.0266 (17)0.0117 (13)0.0023 (14)
O20.0596 (16)0.0744 (18)0.0610 (15)0.0185 (14)0.0035 (12)−0.0015 (13)
O30.0670 (17)0.0770 (18)0.0552 (14)0.0171 (14)−0.0010 (12)0.0033 (13)
C10.101 (3)0.085 (3)0.085 (3)0.032 (3)−0.015 (3)−0.012 (2)
C20.074 (3)0.064 (2)0.065 (2)0.014 (2)0.0040 (19)0.0096 (19)
C30.063 (2)0.046 (2)0.067 (2)−0.0010 (18)0.0010 (18)−0.0020 (18)
C40.055 (2)0.058 (2)0.0580 (19)−0.0002 (18)0.0049 (16)0.0037 (18)
C50.059 (2)0.048 (2)0.0497 (18)−0.0008 (17)0.0083 (16)−0.0009 (16)
C60.049 (2)0.0390 (18)0.0498 (17)−0.0036 (16)0.0070 (15)0.0020 (14)
C70.055 (2)0.050 (2)0.0460 (17)−0.0029 (18)−0.0016 (15)0.0032 (15)
C80.063 (2)0.060 (2)0.0479 (18)−0.0032 (19)0.0119 (17)−0.0051 (16)
C90.054 (2)0.044 (2)0.0521 (18)−0.0044 (17)0.0040 (16)−0.0030 (15)
C100.059 (2)0.044 (2)0.0469 (17)−0.0014 (17)−0.0016 (16)0.0008 (15)
C110.057 (2)0.053 (2)0.0443 (17)0.0006 (18)0.0054 (16)−0.0015 (15)
C120.062 (2)0.061 (2)0.064 (2)0.006 (2)0.0000 (18)0.0036 (19)

Geometric parameters (Å, °)

O1—C51.220 (4)C4—C51.501 (4)
O2—C91.370 (4)C4—H4A0.9700
O2—C121.419 (4)C4—H4B0.9700
O3—C101.365 (4)C5—C61.482 (4)
O3—C121.419 (4)C6—C71.387 (4)
C1—C21.491 (5)C6—C111.407 (4)
C1—H1A0.9600C7—C81.394 (5)
C1—H1B0.9600C7—H7A0.9300
C1—H1C0.9600C8—C91.358 (5)
C2—C31.495 (4)C8—H8A0.9300
C2—H2A0.9700C9—C101.389 (4)
C2—H2B0.9700C10—C111.349 (4)
C3—C41.508 (4)C11—H11A0.9300
C3—H3A0.9700C12—H12A0.9700
C3—H3B0.9700C12—H12B0.9700
C9—O2—C12105.9 (3)O1—C5—C4120.1 (3)
C10—O3—C12105.9 (2)C6—C5—C4119.8 (3)
C2—C1—H1A109.5C7—C6—C11119.6 (3)
C2—C1—H1B109.5C7—C6—C5122.6 (3)
H1A—C1—H1B109.5C11—C6—C5117.8 (3)
C2—C1—H1C109.5C6—C7—C8121.4 (3)
H1A—C1—H1C109.5C6—C7—H7A119.3
H1B—C1—H1C109.5C8—C7—H7A119.3
C1—C2—C3115.6 (3)C9—C8—C7117.4 (3)
C1—C2—H2A108.4C9—C8—H8A121.3
C3—C2—H2A108.4C7—C8—H8A121.3
C1—C2—H2B108.4C8—C9—O2128.8 (3)
C3—C2—H2B108.4C8—C9—C10121.7 (3)
H2A—C2—H2B107.5O2—C9—C10109.5 (3)
C2—C3—C4114.1 (3)C11—C10—O3128.6 (3)
C2—C3—H3A108.7C11—C10—C9121.6 (3)
C4—C3—H3A108.7O3—C10—C9109.8 (3)
C2—C3—H3B108.7C10—C11—C6118.2 (3)
C4—C3—H3B108.7C10—C11—H11A120.9
H3A—C3—H3B107.6C6—C11—H11A120.9
C5—C4—C3115.1 (3)O3—C12—O2108.9 (3)
C5—C4—H4A108.5O3—C12—H12A109.9
C3—C4—H4A108.5O2—C12—H12A109.9
C5—C4—H4B108.5O3—C12—H12B109.9
C3—C4—H4B108.5O2—C12—H12B109.9
H4A—C4—H4B107.5H12A—C12—H12B108.3
O1—C5—C6120.1 (3)
C1—C2—C3—C4−177.5 (3)C12—O2—C9—C100.9 (4)
C2—C3—C4—C5−179.0 (3)C12—O3—C10—C11180.0 (4)
C3—C4—C5—O18.2 (5)C12—O3—C10—C9−1.2 (4)
C3—C4—C5—C6−173.9 (3)C8—C9—C10—C11−1.8 (5)
O1—C5—C6—C7176.7 (3)O2—C9—C10—C11179.1 (3)
C4—C5—C6—C7−1.3 (5)C8—C9—C10—O3179.3 (3)
O1—C5—C6—C11−4.6 (5)O2—C9—C10—O30.2 (4)
C4—C5—C6—C11177.5 (3)O3—C10—C11—C6179.0 (3)
C11—C6—C7—C80.4 (5)C9—C10—C11—C60.2 (5)
C5—C6—C7—C8179.1 (3)C7—C6—C11—C100.4 (5)
C6—C7—C8—C9−1.8 (5)C5—C6—C11—C10−178.4 (3)
C7—C8—C9—O2−178.6 (3)C10—O3—C12—O21.8 (4)
C7—C8—C9—C102.5 (5)C9—O2—C12—O3−1.7 (4)
C12—O2—C9—C8−178.1 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C8—H8A···O1i0.932.603.419 (4)148
C3—H3A···Cg2ii0.972.993.831 (3)145
C12—H12A···Cg2iii0.972.843.633 (3)139

Symmetry codes: (i) x+1/2, −y+3/2, z−1/2; (ii) x+1, y, z; (iii) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2587).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Enraf–Nonius (1985). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • Koeppe, H., Ludwig, G. & Zeile, K. (1969). Boehringer Ingelheim GmbH, US Patent No. 3478050.
  • May, P. J., Bradley, M., Harrowven, D. C. & Pallin, D. (2000). Tetrahedron Lett.41, 1627–1630.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography