PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 January 1; 65(Pt 1): o162.
Published online 2008 December 20. doi:  10.1107/S1600536808042505
PMCID: PMC2968074

N-(4-Chloro­phen­yl)-4-(2-oxocyclo­pent­yl)butyramide

Abstract

In the title compound, C15H18ClNO2, the amide group is coplanar with the chloro­phenyl group, making a dihedral angle of 1.71 (12)°. The cyclo­penta­none ring adopts a twist conformation. A weak intra­molecular C—H(...)O hydrogen bond is observed. Mol­ecules are linked into cyclic centrosymmetric dimers by paired N—H(...)O hydrogen bonds.

Related literature

For the synthesis of cyathin terpenoids, see: Drège et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o162-scheme1.jpg

Experimental

Crystal data

  • C15H18ClNO2
  • M r = 279.75
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o162-efi1.jpg
  • a = 5.5897 (2) Å
  • b = 8.8847 (3) Å
  • c = 14.6480 (4) Å
  • α = 80.906 (2)°
  • β = 86.436 (2)°
  • γ = 85.351 (2)°
  • V = 715.05 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.27 mm−1
  • T = 296 (2) K
  • 0.42 × 0.40 × 0.20 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.895, T max = 0.948
  • 8899 measured reflections
  • 3273 independent reflections
  • 1648 reflections with I > 2σ(I)
  • R int = 0.047

Refinement

  • R[F 2 > 2σ(F 2)] = 0.053
  • wR(F 2) = 0.147
  • S = 1.01
  • 3273 reflections
  • 172 parameters
  • H-atom parameters constrained
  • Δρmax = 0.35 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XP in SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808042505/ci2743sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808042505/ci2743Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the NSFC (grant Nos. 20672075 and 20771076) and Sichuan University for financial support.

supplementary crystallographic information

Comment

2-Oxocyclopentyl carboxylic acid derivatives are a class of starting materials important for the preparation of cyathin terpenoids (Drège et al., 2006). We report here the crystal structure of the title compound, a oxocyclopentyl derivative.

Bond lengths and angles are normal. The amide group is almost coplanar with the benzene ring system (Fig. 1). The C8/C9/N1/O2 and C10—C15 planes form dihedral angle of 1.71 (12)°. The cyclopentanone ring adopts a twist conformation. An intramolecular C15—H15···O2 hydrogen bond is observed.

The crystal packing is stabilized by N—H···O hydrogen bonds (Table 1). The molecules are linked into cyclic centrosymmetric dimers by paired N—H···O hydrogen bonds.

Experimental

A mixture of spiro[4,4]nonane-1,6-dione (1 mmol), p-chloroaniline (2.2 mmol) and iodine (0.1 mmol) was stirred in refluxing dichloromethane (20 ml) for 24 h to afford the title compound. Single crystals suitable for X-ray diffraction were obtained by slow evaporation an ethyl acetate solution.

Refinement

All H atoms were placed in calculated positions, with C-H = 0.93–0.98 Å and N-H = 0.86 Å, and refined using a riding model, with Uiso(H) = 1.2Ueq(C,N).

Figures

Fig. 1.
The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atomic numbering. H atoms have been omitted for clarity.

Crystal data

C15H18ClNO2Z = 2
Mr = 279.75F(000) = 296
Triclinic, P1Dx = 1.299 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.5897 (2) ÅCell parameters from 2436 reflections
b = 8.8847 (3) Åθ = 2.8–25.4°
c = 14.6480 (4) ŵ = 0.27 mm1
α = 80.906 (2)°T = 296 K
β = 86.436 (2)°Plate, colourless
γ = 85.351 (2)°0.42 × 0.40 × 0.20 mm
V = 715.05 (4) Å3

Data collection

Bruker SMART CCD area-detector diffractometer3273 independent reflections
Radiation source: fine-focus sealed tube1648 reflections with I > 2σ(I)
graphiteRint = 0.047
[var phi] and ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2001)h = −7→7
Tmin = 0.895, Tmax = 0.948k = −11→11
8899 measured reflectionsl = −18→18

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.0664P)2] where P = (Fo2 + 2Fc2)/3
3273 reflections(Δ/σ)max = 0.001
172 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = −0.20 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl11.27737 (9)0.49407 (7)0.08887 (3)0.06892 (18)
O1−0.2238 (3)1.05919 (19)0.73712 (11)0.0902 (5)
O20.7274 (3)0.6356 (2)0.50469 (10)0.0867 (5)
N10.5659 (3)0.70953 (19)0.36547 (10)0.0563 (5)
H1N0.44050.75670.34020.068*
C1−0.0587 (4)0.9846 (2)0.77649 (14)0.0629 (6)
C2−0.0494 (4)0.9474 (3)0.87916 (14)0.0796 (8)
H2A−0.17080.87810.90450.095*
H2B−0.07491.03940.90750.095*
C30.2010 (4)0.8723 (3)0.89563 (15)0.0833 (8)
H3A0.19790.78990.94770.100*
H3B0.30910.94610.90770.100*
C40.2785 (4)0.8112 (3)0.80617 (14)0.0780 (7)
H4A0.45210.80530.79710.094*
H4B0.22320.71010.80750.094*
C50.1666 (4)0.9211 (3)0.73132 (14)0.0690 (7)
H50.27181.00580.71950.083*
C60.1382 (3)0.8771 (2)0.63830 (13)0.0604 (6)
H6A0.08570.96770.59620.072*
H6B0.01310.80620.64380.072*
C70.3644 (4)0.8047 (3)0.59707 (14)0.0640 (6)
H7A0.49260.87260.59560.077*
H7B0.41060.71020.63690.077*
C80.3397 (4)0.7707 (3)0.50060 (13)0.0643 (6)
H8A0.21140.70290.50220.077*
H8B0.29280.86530.46100.077*
C90.5627 (3)0.6992 (2)0.45871 (13)0.0569 (6)
C100.7424 (3)0.6552 (2)0.30324 (12)0.0480 (5)
C110.6974 (3)0.6867 (2)0.21012 (13)0.0567 (6)
H110.55510.74140.19160.068*
C120.8597 (3)0.6383 (2)0.14440 (13)0.0583 (6)
H120.82720.65980.08200.070*
C131.0715 (4)0.5576 (2)0.17201 (13)0.0541 (5)
C141.1172 (3)0.5254 (2)0.26439 (13)0.0573 (6)
H141.26020.47120.28260.069*
C150.9538 (3)0.5726 (2)0.33070 (13)0.0544 (5)
H150.98540.54910.39310.065*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0568 (3)0.0872 (4)0.0638 (3)0.0107 (3)0.0032 (2)−0.0254 (3)
O10.0787 (10)0.1028 (12)0.0828 (10)0.0400 (9)−0.0128 (8)−0.0151 (9)
O20.0723 (10)0.1230 (13)0.0595 (9)0.0368 (10)−0.0164 (8)−0.0149 (9)
N10.0465 (9)0.0684 (11)0.0526 (9)0.0090 (8)−0.0091 (7)−0.0088 (8)
C10.0598 (12)0.0642 (14)0.0629 (12)0.0108 (11)−0.0048 (10)−0.0112 (11)
C20.0792 (15)0.0972 (18)0.0594 (13)0.0053 (14)0.0041 (12)−0.0120 (13)
C30.0906 (17)0.1014 (19)0.0553 (12)0.0122 (15)−0.0159 (12)−0.0090 (13)
C40.0749 (15)0.0888 (17)0.0686 (14)0.0144 (13)−0.0177 (12)−0.0118 (13)
C50.0677 (13)0.0778 (15)0.0586 (12)0.0218 (12)−0.0071 (11)−0.0137 (12)
C60.0537 (12)0.0688 (14)0.0581 (11)0.0089 (11)−0.0066 (10)−0.0132 (11)
C70.0566 (12)0.0726 (15)0.0634 (12)0.0057 (11)−0.0043 (10)−0.0173 (11)
C80.0556 (12)0.0810 (15)0.0556 (12)0.0094 (11)−0.0046 (10)−0.0148 (11)
C90.0502 (11)0.0674 (14)0.0524 (11)0.0056 (11)−0.0091 (10)−0.0096 (10)
C100.0442 (10)0.0490 (12)0.0512 (10)0.0003 (9)−0.0041 (9)−0.0102 (9)
C110.0497 (11)0.0652 (13)0.0543 (11)0.0058 (10)−0.0097 (9)−0.0091 (10)
C120.0577 (12)0.0693 (14)0.0482 (11)0.0029 (11)−0.0078 (9)−0.0117 (10)
C130.0524 (11)0.0540 (12)0.0572 (11)−0.0021 (10)0.0000 (9)−0.0144 (10)
C140.0513 (11)0.0565 (13)0.0634 (12)0.0066 (10)−0.0109 (10)−0.0094 (11)
C150.0527 (11)0.0596 (13)0.0505 (11)0.0003 (10)−0.0084 (9)−0.0074 (10)

Geometric parameters (Å, °)

Cl1—C131.750 (2)C6—C71.508 (3)
O1—C11.212 (2)C6—H6A0.97
O2—C91.222 (2)C6—H6B0.97
N1—C91.353 (2)C7—C81.508 (3)
N1—C101.410 (2)C7—H7A0.97
N1—H1N0.86C7—H7B0.97
C1—C21.491 (3)C8—C91.495 (3)
C1—C51.497 (3)C8—H8A0.97
C2—C31.517 (3)C8—H8B0.97
C2—H2A0.97C10—C111.383 (2)
C2—H2B0.97C10—C151.386 (2)
C3—C41.522 (3)C11—C121.376 (3)
C3—H3A0.97C11—H110.93
C3—H3B0.97C12—C131.382 (3)
C4—C51.481 (3)C12—H120.93
C4—H4A0.97C13—C141.374 (3)
C4—H4B0.97C14—C151.382 (3)
C5—C61.496 (3)C14—H140.93
C5—H50.98C15—H150.93
C9—N1—C10130.17 (15)H6A—C6—H6B107.7
C9—N1—H1N114.9C8—C7—C6113.75 (16)
C10—N1—H1N114.9C8—C7—H7A108.8
O1—C1—C2123.9 (2)C6—C7—H7A108.8
O1—C1—C5126.11 (19)C8—C7—H7B108.8
C2—C1—C5110.00 (17)C6—C7—H7B108.8
C1—C2—C3104.75 (17)H7A—C7—H7B107.7
C1—C2—H2A110.8C9—C8—C7114.38 (16)
C3—C2—H2A110.8C9—C8—H8A108.7
C1—C2—H2B110.8C7—C8—H8A108.7
C3—C2—H2B110.8C9—C8—H8B108.7
H2A—C2—H2B108.9C7—C8—H8B108.7
C2—C3—C4104.48 (17)H8A—C8—H8B107.6
C2—C3—H3A110.9O2—C9—N1122.76 (18)
C4—C3—H3A110.9O2—C9—C8122.95 (18)
C2—C3—H3B110.9N1—C9—C8114.29 (16)
C4—C3—H3B110.9C11—C10—C15119.36 (18)
H3A—C3—H3B108.9C11—C10—N1117.04 (16)
C5—C4—C3105.72 (18)C15—C10—N1123.60 (16)
C5—C4—H4A110.6C12—C11—C10121.07 (18)
C3—C4—H4A110.6C12—C11—H11119.5
C5—C4—H4B110.6C10—C11—H11119.5
C3—C4—H4B110.6C11—C12—C13119.37 (18)
H4A—C4—H4B108.7C11—C12—H12120.3
C4—C5—C6120.96 (19)C13—C12—H12120.3
C4—C5—C1104.34 (17)C14—C13—C12119.93 (18)
C6—C5—C1115.15 (17)C14—C13—Cl1120.45 (15)
C4—C5—H5105.0C12—C13—Cl1119.61 (15)
C6—C5—H5105.0C13—C14—C15120.91 (18)
C1—C5—H5105.0C13—C14—H14119.5
C5—C6—C7113.96 (16)C15—C14—H14119.5
C5—C6—H6A108.8C14—C15—C10119.36 (17)
C7—C6—H6A108.8C14—C15—H15120.3
C5—C6—H6B108.8C10—C15—H15120.3
C7—C6—H6B108.8
O1—C1—C2—C3−172.7 (2)C10—N1—C9—C8−179.45 (18)
C5—C1—C2—C35.5 (3)C7—C8—C9—O219.1 (3)
C1—C2—C3—C4−23.3 (3)C7—C8—C9—N1−161.51 (18)
C2—C3—C4—C533.3 (3)C9—N1—C10—C11−178.43 (19)
C3—C4—C5—C6−161.1 (2)C9—N1—C10—C152.0 (3)
C3—C4—C5—C1−29.4 (2)C15—C10—C11—C12−0.5 (3)
O1—C1—C5—C4−166.9 (2)N1—C10—C11—C12179.91 (18)
C2—C1—C5—C414.9 (3)C10—C11—C12—C13−0.3 (3)
O1—C1—C5—C6−32.0 (3)C11—C12—C13—C140.5 (3)
C2—C1—C5—C6149.9 (2)C11—C12—C13—Cl1179.36 (16)
C4—C5—C6—C7−49.6 (3)C12—C13—C14—C150.1 (3)
C1—C5—C6—C7−176.49 (18)Cl1—C13—C14—C15−178.77 (15)
C5—C6—C7—C8−175.97 (19)C13—C14—C15—C10−0.9 (3)
C6—C7—C8—C9179.88 (18)C11—C10—C15—C141.0 (3)
C10—N1—C9—O20.0 (3)N1—C10—C15—C14−179.37 (18)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.862.172.980 (2)158
C15—H15···O20.932.292.889 (2)121

Symmetry codes: (i) −x, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2743).

References

  • Bruker (2001). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Drège, E., Tominiaux, C., Morgant, G. & Desmaële, D. (2006). Eur. J. Org. Chem. pp. 4825–4840.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography