PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 January 1; 65(Pt 1): o158.
Published online 2008 December 20. doi:  10.1107/S1600536808042542
PMCID: PMC2968071

1,2-Bis(1,3-benzothia­zol-2-yl)benzene

Abstract

The title compound, C20H12N2S2, was prepared by the reaction of o-phthalic acid and 2-amino­thio­phenol under microwave irradation. The phenyl ring, A, and the benzothia­zolyl rings, B and C, are planar; the dihedral angles are A/B = 19.9 (11), A/C = 87.8 (3) and B/C = 84.4 (4)°. Weak inter­molecular C—H(...)N hydrogen bonds link the mol­ecule, forming zigzag chains parallel to the c axis.

Related literature

For details of the synthesis and applications of benzothia­zoles, see: Chakraborti et al. (2004 [triangle]); Seijas et al. (2007 [triangle]). For the use of microwave-assisted organic synthesis, see: Kappe & Stadler (2005 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o158-scheme1.jpg

Experimental

Crystal data

  • C20H12N2S2
  • M r = 344.44
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o158-efi3.jpg
  • a = 10.748 (2) Å
  • b = 19.148 (4) Å
  • c = 8.1840 (16) Å
  • β = 100.77 (3)°
  • V = 1654.6 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.32 mm−1
  • T = 293 (2) K
  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.909, T max = 0.968
  • 3000 measured reflections
  • 3000 independent reflections
  • 1640 reflections with I > 2σ(I)
  • 3 standard reflections every 200 reflections intensity decay: 9%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.069
  • wR(F 2) = 0.206
  • S = 1.10
  • 3000 reflections
  • 217 parameters
  • H-atom parameters constrained
  • Δρmax = 0.31 e Å−3
  • Δρmin = −0.32 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989 [triangle]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]), ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808042542/dn2416sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808042542/dn2416Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

supplementary crystallographic information

Comment

Benzothiazole are remarkable heterocyclic ring systems. They have been found to exhibit a wide spectrum of biological activities. They have shown antitumor,antimalarial,and fungicide activity. They are also an important class of industrial chemicals. Many kinds of 2-substituted benzothiazoles are utilized as vulcanization accelators in the manufacture of rubber,as fluorescent brightening agents in textile dyeing,and in the leather industry (Chakraborti et al.,2004; Seijas et al.,2007). There are numerous synthetic methods to produce 2-arylbenzothiazoles. The most important ones include the reaction of o-aminothiophenols with benzoic acids or their derivatives (Chakraborti et al.,2004; Seijas et al.,2007). Microwave-assisted organic synthesis (MAOS) is a powerful technique that is being used more and more to accelerate thermal organic reactions (Kappe & Stadler, 2005). We are focusing on Microwave-assisted synthesis of new products of bisbenzothiazole. We here report the crystal structure of the title compound (I).

The phenyl ring A (C8/C9/C13), benzothiazolyl ring B(C1/C2/C6/C7) and benzothiazolyl ring C(C14/C15/C20) are planar (Fig. 1). The dihedral angles between them are A/B = 19.9°, A/C = 87.8°, B/C = 84.4°, respectively. All bond lengths are within normal ranges (Allen et al., 1987). There are weak intermolecular C—H···N hydrogen bonds whick link the molecule forming zig-zag chains parallel to the c axis .(Table 1, Fig.2).

Experimental

A mixture of 2-aminothiophenol (2.5 g, 20 mmol), 5 ml orthophosphoric acid, 5 g polyphosphoric acid and o-phthalic acid (1.66 g, 10 mmol) in a beakerflask (150 ml) was placed in a domestic microwave oven (0.8 KW, 2450 MHz) and irradiated (micromode, full power) for 4 min(30 s per time). The reaction mixture was cooled to r.t. and washed with aq NaOH (20%, 150 ml), The pH was adjusted to 10, the resulted solide was filtered. Then the crude compound(I) was obtained. It was crystallized from ethanol. Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of methanol. 1H NMR (DMSO, δ, p.p.m.) 7.35–7.40 (m, 2 H), 7.46–7.51 (m, 2 H), 7.64 (dd,2 H), 7.81 (d, 2 H), 7.95 (dd,2 H), 8.05 (d,2 H).

Refinement

All H atoms were positioned geometrically, with C—H = 0.96 and 0.97 Å for methyl and methylene H atoms, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x= 1.5 for methyl H and x = 1.2 for methylene H atoms.

Figures

Fig. 1.
A view of the molecular structure of (I) with the atom-numbering scheme. Ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
Fig. 2.
Partial packing view of (I) showing the C-H···N hydrogen bonds shown as dashed lines. [Symmetry code: (i) x, -y+1/2, z-1/2 ]

Crystal data

C20H12N2S2F(000) = 712
Mr = 344.44Dx = 1.383 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 27 reflections
a = 10.748 (2) Åθ = 1–25°
b = 19.148 (4) ŵ = 0.32 mm1
c = 8.1840 (16) ÅT = 293 K
β = 100.77 (3)°Block, yellow
V = 1654.6 (6) Å30.30 × 0.20 × 0.10 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer1640 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.0000
graphiteθmax = 25.3°, θmin = 1.9°
ω/2θ scansh = −12→12
Absorption correction: ψ scan (North et al., 1968)k = 0→22
Tmin = 0.909, Tmax = 0.968l = 0→9
3000 measured reflections3 standard reflections every 200 reflections
3000 independent reflections intensity decay: 9%

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.206H-atom parameters constrained
S = 1.10w = 1/[σ2(Fo2) + (0.0773P)2 + 1.3256P] where P = (Fo2 + 2Fc2)/3
3000 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = −0.32 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.1724 (9)0.5336 (4)0.9897 (12)0.108 (3)
H10.12020.56301.03760.130*
C20.1344 (7)0.5137 (4)0.8270 (9)0.096 (2)
H20.05830.52910.76400.116*
C30.2149 (6)0.4693 (3)0.7600 (7)0.0610 (15)
C40.3256 (5)0.4465 (3)0.8557 (6)0.0524 (13)
C50.3633 (6)0.4661 (3)1.0209 (7)0.0664 (16)
H50.43760.44961.08620.080*
C60.2832 (8)0.5121 (4)1.0827 (9)0.085 (2)
H60.30640.52841.19110.102*
C70.2792 (4)0.4036 (3)0.5708 (6)0.0456 (12)
C80.2677 (5)0.3692 (3)0.4050 (6)0.0457 (12)
C90.1489 (5)0.3646 (3)0.3069 (7)0.0586 (15)
H90.08000.38350.34530.070*
C100.1297 (6)0.3325 (3)0.1532 (8)0.0712 (18)
H100.04850.33000.08970.085*
C110.2287 (6)0.3044 (3)0.0938 (8)0.0702 (17)
H110.21590.2832−0.01020.084*
C120.3461 (6)0.3079 (3)0.1882 (8)0.0664 (16)
H120.41330.28880.14640.080*
C130.3715 (5)0.3394 (3)0.3479 (6)0.0474 (12)
C140.5036 (5)0.3402 (3)0.4373 (6)0.0486 (13)
C150.6821 (5)0.3021 (3)0.5897 (6)0.0478 (13)
C160.7649 (6)0.2577 (3)0.6947 (8)0.0701 (17)
H160.73660.21530.72970.084*
C170.8887 (6)0.2782 (4)0.7449 (8)0.0744 (18)
H170.94470.24980.81570.089*
C180.9307 (6)0.3412 (4)0.6907 (7)0.0682 (17)
H181.01550.35320.72400.082*
C190.8532 (5)0.3858 (3)0.5915 (7)0.0590 (15)
H190.88350.42800.55830.071*
C200.7256 (4)0.3666 (3)0.5396 (6)0.0470 (12)
N10.1893 (4)0.4454 (2)0.5978 (5)0.0545 (12)
N20.5565 (4)0.2888 (2)0.5286 (5)0.0538 (11)
S10.40034 (14)0.39075 (8)0.73836 (18)0.0629 (5)
S20.60337 (13)0.40998 (7)0.41671 (19)0.0594 (5)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.126 (7)0.104 (7)0.109 (7)0.032 (6)0.056 (6)−0.017 (5)
C20.102 (6)0.112 (6)0.083 (5)0.036 (5)0.038 (4)−0.013 (5)
C30.071 (4)0.061 (4)0.058 (4)0.003 (3)0.029 (3)−0.004 (3)
C40.058 (3)0.054 (3)0.048 (3)−0.007 (3)0.017 (3)0.000 (3)
C50.077 (4)0.075 (4)0.048 (3)−0.020 (3)0.014 (3)−0.005 (3)
C60.114 (6)0.085 (5)0.067 (4)−0.017 (5)0.048 (4)−0.024 (4)
C70.038 (3)0.048 (3)0.051 (3)−0.001 (2)0.010 (2)0.008 (2)
C80.049 (3)0.041 (3)0.050 (3)0.003 (2)0.016 (2)0.005 (2)
C90.047 (3)0.073 (4)0.055 (4)−0.002 (3)0.010 (3)−0.006 (3)
C100.057 (4)0.083 (5)0.069 (4)0.000 (3)−0.001 (3)0.005 (4)
C110.079 (4)0.068 (4)0.061 (4)−0.002 (4)0.007 (3)−0.013 (3)
C120.072 (4)0.060 (4)0.071 (4)0.007 (3)0.023 (3)−0.010 (3)
C130.050 (3)0.042 (3)0.053 (3)0.000 (2)0.017 (2)−0.003 (2)
C140.049 (3)0.051 (3)0.052 (3)0.007 (2)0.026 (2)0.004 (3)
C150.047 (3)0.055 (3)0.045 (3)0.013 (2)0.019 (2)0.009 (2)
C160.076 (4)0.069 (4)0.072 (4)0.015 (3)0.030 (3)0.023 (3)
C170.075 (4)0.082 (5)0.069 (4)0.022 (4)0.021 (4)0.013 (4)
C180.056 (3)0.094 (5)0.055 (4)0.007 (3)0.011 (3)−0.010 (4)
C190.059 (3)0.065 (4)0.055 (3)−0.003 (3)0.016 (3)−0.005 (3)
C200.043 (3)0.056 (3)0.045 (3)0.006 (2)0.015 (2)0.005 (2)
N10.045 (2)0.062 (3)0.057 (3)0.015 (2)0.012 (2)0.000 (2)
N20.053 (3)0.054 (3)0.058 (3)−0.002 (2)0.021 (2)0.002 (2)
S10.0625 (9)0.0730 (11)0.0537 (9)0.0142 (8)0.0116 (7)−0.0059 (8)
S20.0572 (9)0.0493 (8)0.0699 (10)−0.0033 (7)0.0072 (7)0.0119 (7)

Geometric parameters (Å, °)

C1—C61.352 (10)C10—H100.9300
C1—C21.372 (10)C11—C121.352 (8)
C1—H10.9300C11—H110.9300
C2—C31.395 (8)C12—C131.418 (7)
C2—H20.9300C12—H120.9300
C3—C41.369 (7)C13—C141.471 (7)
C3—N11.383 (7)C14—N21.301 (6)
C4—C51.389 (7)C14—S21.740 (5)
C4—S11.730 (5)C15—N21.373 (6)
C5—C61.391 (9)C15—C161.402 (7)
C5—H50.9300C15—C201.409 (7)
C6—H60.9300C16—C171.374 (8)
C7—N11.305 (6)C16—H160.9300
C7—C81.492 (7)C17—C181.390 (9)
C7—S11.723 (5)C17—H170.9300
C8—C91.379 (7)C18—C191.352 (8)
C8—C131.409 (7)C18—H180.9300
C9—C101.381 (8)C19—C201.407 (7)
C9—H90.9300C19—H190.9300
C10—C111.360 (8)C20—S21.712 (5)
C6—C1—C2122.1 (7)C10—C11—H11120.5
C6—C1—H1118.9C11—C12—C13123.1 (6)
C2—C1—H1118.9C11—C12—H12118.4
C1—C2—C3117.2 (7)C13—C12—H12118.4
C1—C2—H2121.4C8—C13—C12116.7 (5)
C3—C2—H2121.4C8—C13—C14125.5 (5)
C4—C3—N1116.0 (5)C12—C13—C14117.8 (5)
C4—C3—C2120.4 (6)N2—C14—C13123.7 (5)
N1—C3—C2123.6 (6)N2—C14—S2115.2 (4)
C3—C4—C5122.3 (6)C13—C14—S2121.0 (4)
C3—C4—S1108.9 (4)N2—C15—C16125.4 (5)
C5—C4—S1128.8 (5)N2—C15—C20114.4 (4)
C4—C5—C6115.9 (6)C16—C15—C20120.2 (5)
C4—C5—H5122.0C17—C16—C15118.5 (6)
C6—C5—H5122.0C17—C16—H16120.7
C1—C6—C5121.9 (7)C15—C16—H16120.7
C1—C6—H6119.0C16—C17—C18120.5 (6)
C5—C6—H6119.0C16—C17—H17119.8
N1—C7—C8119.1 (4)C18—C17—H17119.8
N1—C7—S1115.2 (4)C19—C18—C17122.6 (6)
C8—C7—S1125.6 (4)C19—C18—H18118.7
C9—C8—C13119.0 (5)C17—C18—H18118.7
C9—C8—C7117.9 (4)C18—C19—C20118.2 (6)
C13—C8—C7123.0 (4)C18—C19—H19120.9
C8—C9—C10121.6 (5)C20—C19—H19120.9
C8—C9—H9119.2C19—C20—C15119.9 (5)
C10—C9—H9119.2C19—C20—S2130.4 (4)
C11—C10—C9120.5 (6)C15—C20—S2109.7 (4)
C11—C10—H10119.7C7—N1—C3110.2 (4)
C9—C10—H10119.7C14—N2—C15111.4 (4)
C12—C11—C10119.0 (6)C7—S1—C489.6 (3)
C12—C11—H11120.5C20—S2—C1489.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C12—H12···N2i0.932.463.370 (7)165

Symmetry codes: (i) x, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2416).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  • Chakraborti, A. K., Selvam, C., Kaur, G. & Bhagat, S. (2004). Synlett, pp. 851–855.
  • Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • Kappe, C. O. & Stadler, A. (2005). In Microwaves in Organic and Medicinal Chemistry Weinheim: Wiley-VCH.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Seijas, J. A., Vazquez, T. M. P., Carballido, R. M. R., Crecente, C. J. & Romar, L. L. (2007). Synlett, pp. 313–317.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography