PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 January 1; 65(Pt 1): o154.
Published online 2008 December 17. doi:  10.1107/S1600536808042414
PMCID: PMC2968068

(3S,4S,5R)-4-Hydr­oxy-3-methyl-5-[(2S,3R)-3-methyl­pent-4-en-2-yl]-4,5-dihydro­furan-2(3H)-one

Abstract

The relative configuration of the title compound, C11H18O3, was corroborated by single-crystal X-ray diffraction analysis. In the crystal, mol­ecules are linked via a O—H(...)O hydrogen bond and a chain of mol­ecules is formed along [010].

Related literature

For further synthetic details, see: Abraham, Körner & Hierse­mann (2004 [triangle]); Abraham, Körner et al. (2004 [triangle]); Evans et al. (1981 [triangle], 1999 [triangle]); Körner & Hiersemann (2006 [triangle], 2007 [triangle]); Mitsunobu (1981 [triangle]); Mitsunobu & Yamada (1967 [triangle]); Mitsunobu et al. (1967 [triangle]); Otera et al. (1992 [triangle]); Pollex & Hiersemann (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o154-scheme1.jpg

Experimental

Crystal data

  • C11H18O3
  • M r = 198.25
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o154-efi1.jpg
  • a = 7.604 (2) Å
  • b = 6.574 (2) Å
  • c = 11.323 (4) Å
  • β = 91.211 (7)°
  • V = 565.9 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 173 (2) K
  • 0.35 × 0.10 × 0.07 mm

Data collection

  • Siemens SMART three-axis goniometer with APEXII area-detector diffractometer
  • Absorption correction: none
  • 7868 measured reflections
  • 1507 independent reflections
  • 1076 reflections with I > 2σ(I)
  • R int = 0.131

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054
  • wR(F 2) = 0.098
  • S = 0.98
  • 1507 reflections
  • 132 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.19 e Å−3
  • Δρmin = −0.19 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL-Plus (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808042414/hb2861sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808042414/hb2861Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The title compound, (I), was synthesized using a catalytic asymmetric Claisen rearrangement (Abraham, Körner et al., 2004; Abraham, Körner & Hiersemann, 2004; Pollex & Hiersemann, 2005; Körner & Hiersemann, 2006, 2007), a diastereoselective reduction with K-Selectride (Körner & Hiersemann, 2006, 2007), a Mitsunobu reaction (Mitsunobu & Yamada, 1967; Mitsunobu et al., 1967; Mitsunobu, 1981) and an Evans aldol addition (Evans et al., 1981). In order to verify the relative configuration of the obtained aldol adduct, 4-(tert-butyldimethylsilyloxy)-3-hydroxy-2,5,6-trimethyloct-7-enoyl)-4-isopropyloxazolidin-2-one, (II), a γ-lactone, (I), was prepared by removal of the silyl protecting group (Otera et al., 1992) and subsequent in situ lactonization. Fig. 1 depicts the structure of the isolated diastereomer (I). The configuration of the chiral C atoms in (I) can be attributed to the stereochemical course of the Evans aldol addition (C3 S and C4 S), the diastereoselective reduction with K-Selectride (C5 S) followed by Mitsunobu reaction (C5 R), and the catalytic asymmetric Claisen rearrangement (C[2] S and C[3] R) using the chiral Lewis acid [Cu{(S,S)-tert-Butyl-box}](H2O)2(SbF6)2 (Evans et al., 1999).

In the crystal, an O—H···O hydrogen bond (Table 1) links the molecules into chains propagating in [010].

Experimental

The title compound, (I), was synthesized from the corresponding syn-aldol adduct, (II), using tetrabutylammonium fluoride (TBAF) in the presence of acetic acid (Otera et al., 1992) for the removal of the silyl protecting group. The subsequent lactonization proceeded in situ.

To a solution of diastereomerically pure (II) (66 mg, 0.15 mmol, 1.0 eq) in tetrahydrofuran (0.8 ml) was added acetic acid (0.9 µl, 0.015 mmol, 0.1 eq) in tetrahydrofuran (0.1 ml) and TBAF (1 M in tetrahydrofuran, 0.225 ml, 1.5 eq) at 273 K. After stirring for 20 min at 273 K, the mixture was allowed to warm to room temperature. After stirring the reaction mixture for 4.5 h at room temperature, the reaction was quenched by the addition of sat. aqueous NH4Cl solution. The phases were separated, and the aqueous phase was extracted with CH2Cl2 (3 × 5 ml). The combined organic layers were dried (MgSO4) and concentrated under reduced pressure. Flash chromatography (isohexane/ethyl acetate 20/1 to 10/1 to 5/1) afforded (I) as a single diastereomer in quantitative yield (29.6 mg, 0.15 mmol) as colourless crystals. Colourless needles of (I) were obtained by vapor diffusion recrystallization technique from isohexane and ethyl acetate: mp 361 K; Rf 0.35 (cyclohexane/ethyl acetate 2/1); 1H NMR (CDCl3, 400 MHz, δ): 0.92 (d, J = 6.8 Hz, 3H), 1.05 (d, J = 6.8 Hz, 3H), 1.31 (d, J = 7.1 Hz, 3H), 1.73 (dqd, J = 6.8, 6.8, 3.6 Hz, 1H), 2.14 (br. s, 1 H), 2.33 (apparent sex, J = 7.7 Hz, 1H), 2.59 (dq, J = 8.6, 7.1 Hz, 1H), 3.91 (dd, J = 8.6 Hz, 1H), 4.20 (dd, J = 8.6, 3.6 Hz, 1H), 5.04 (d, 3J(Z) = 10.0 Hz, 1H), 5.05 (d, 3J(E) = 17.8 Hz, 1H), 5.73 (ddd, 3J(E) = 17.8 Hz, 3J(Z) = 10.0 Hz, 3J = 7.7 Hz, 1H); 13C NMR (CDCl3, 100 MHz, δ): 10.7 (CH3), 12.8 (CH3), 17.2 (CH3), 39.4 (CH), 41.0 (CH), 44.2 (CH), 77.2 (CH), 85.2 (CH), 115.1 (CH2), 143.0 (CH), 176.7 (C); IR (cm-1): 3405(br,s) (ν O—H, OH in H-bridges), 3090(w) 3005(w) (ν C—H, olefin), 2965(s) 2935(m) 2900(m) 2855(w) (νas,s C—H, CH2, CH3, CH), 1740(s) (ν C=O, lactone), 1640(w) (ν C=C), 1460(s) (δas C—H, CH3, CH2), 1380(s) (δs C—H, CH3); Anal. Calcd. for C11H18O3: C, 66.6; H, 9.2; Found: C, 66.7; H, 9.3; [α]D20 +61.4 (c 0.487, CHCl3).

Refinement

The H atoms were geometrically placed (C—H = 0.95–1.00Å, O—H = 0.84Å) and refined as riding with Uiso(H) = 1.2Ueq(C,O) or 1.5Ueq(methyl C).

Figures

Fig. 1.
: The molecular structure of (I) with displacement ellipsoids for the non-hydrogen atoms shown at the 30% probability level.

Crystal data

C11H18O3F(000) = 216
Mr = 198.25Dx = 1.163 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1365 reflections
a = 7.604 (2) Åθ = 2.7–26.3°
b = 6.574 (2) ŵ = 0.08 mm1
c = 11.323 (4) ÅT = 173 K
β = 91.211 (7)°Needle, colourless
V = 565.9 (3) Å30.35 × 0.10 × 0.07 mm
Z = 2

Data collection

Siemens SMART three-axis goniometer with APEXII area-detector system diffractometer1076 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.131
graphiteθmax = 28.3°, θmin = 1.8°
Detector resolution: 512 pixels mm-1h = −9→10
Data collection strategy APEX 2/COSMO scansk = −8→8
7868 measured reflectionsl = −15→14
1507 independent reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.098w = 1/[σ2(Fo2) + (0.0279P)2] where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max < 0.001
1507 reflectionsΔρmax = 0.19 e Å3
132 parametersΔρmin = −0.19 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.077 (11)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.2255 (2)0.2085 (3)0.91883 (16)0.0351 (5)
O20.1493 (2)0.7353 (3)0.96072 (16)0.0382 (5)
H20.20760.83180.99040.057*
O30.2839 (2)0.0670 (3)1.09375 (17)0.0408 (5)
C10.3186 (5)0.7143 (7)0.4846 (3)0.0700 (11)
H1A0.19940.73450.46070.084*
H1B0.40960.73020.42920.084*
C20.3570 (4)0.6651 (5)0.5929 (3)0.0471 (8)
H2A0.47830.64690.61180.057*
C30.2316 (4)0.6337 (4)0.6919 (2)0.0381 (7)
H30.26150.73780.75350.046*
C40.2658 (4)0.4224 (4)0.7492 (2)0.0352 (7)
H40.39590.40820.76150.042*
C50.1827 (3)0.4084 (4)0.8699 (2)0.0305 (6)
H50.05220.42260.86100.037*
C60.2512 (3)0.5554 (4)0.9651 (2)0.0309 (6)
H60.37780.58770.95220.037*
C70.2319 (4)0.4339 (4)1.0786 (2)0.0324 (6)
H70.10860.45221.10590.039*
C80.2500 (3)0.2207 (4)1.0367 (2)0.0327 (6)
C90.0401 (4)0.6683 (5)0.6558 (3)0.0513 (8)
H9A0.02460.80890.62880.077*
H9B−0.03480.64340.72360.077*
H9C0.00720.57480.59160.077*
C100.2046 (4)0.2460 (5)0.6698 (3)0.0468 (8)
H10A0.24870.11730.70250.070*
H10B0.25030.26500.59020.070*
H10C0.07580.24290.66570.070*
C110.3561 (4)0.4916 (5)1.1806 (3)0.0477 (8)
H11A0.33520.40201.24810.071*
H11B0.33470.63311.20350.071*
H11C0.47810.47671.15580.071*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0416 (11)0.0232 (11)0.0406 (11)0.0024 (9)0.0034 (8)−0.0022 (8)
O20.0413 (11)0.0230 (10)0.0504 (12)0.0052 (9)0.0008 (9)−0.0046 (9)
O30.0428 (12)0.0276 (11)0.0520 (13)0.0029 (9)0.0009 (10)0.0033 (9)
C10.078 (2)0.083 (3)0.050 (2)−0.008 (2)0.0124 (17)0.006 (2)
C20.0516 (19)0.0459 (19)0.0439 (19)−0.0065 (15)0.0038 (15)−0.0007 (14)
C30.0457 (18)0.0296 (15)0.0391 (17)−0.0013 (13)0.0026 (14)−0.0019 (12)
C40.0367 (16)0.0273 (15)0.0418 (16)0.0022 (13)0.0027 (12)−0.0043 (13)
C50.0327 (14)0.0184 (13)0.0403 (16)−0.0005 (12)0.0005 (12)−0.0025 (12)
C60.0294 (15)0.0194 (14)0.0441 (16)−0.0010 (11)0.0024 (12)−0.0012 (12)
C70.0328 (15)0.0250 (14)0.0396 (16)−0.0016 (12)0.0010 (12)−0.0060 (12)
C80.0275 (14)0.0268 (14)0.0440 (17)−0.0030 (12)0.0027 (12)−0.0020 (14)
C90.057 (2)0.0446 (19)0.0527 (19)0.0102 (16)0.0027 (15)0.0093 (14)
C100.066 (2)0.0294 (16)0.0447 (17)0.0034 (16)−0.0029 (15)−0.0096 (14)
C110.054 (2)0.0397 (17)0.0489 (19)−0.0075 (15)−0.0091 (15)0.0000 (14)

Geometric parameters (Å, °)

O1—C81.347 (3)C5—C61.531 (4)
O1—C51.460 (3)C5—H51.0000
O2—C61.414 (3)C6—C71.522 (4)
O2—H20.8400C6—H61.0000
O3—C81.223 (3)C7—C81.487 (4)
C1—C21.296 (4)C7—C111.524 (4)
C1—H1A0.9500C7—H71.0000
C1—H1B0.9500C9—H9A0.9800
C2—C31.501 (4)C9—H9B0.9800
C2—H2A0.9500C9—H9C0.9800
C3—C91.521 (4)C10—H10A0.9800
C3—C41.553 (4)C10—H10B0.9800
C3—H31.0000C10—H10C0.9800
C4—C51.520 (4)C11—H11A0.9800
C4—C101.534 (4)C11—H11B0.9800
C4—H41.0000C11—H11C0.9800
C8—O1—C5110.4 (2)C7—C6—H6110.2
C6—O2—H2109.5C5—C6—H6110.2
C2—C1—H1A120.0C8—C7—C6102.4 (2)
C2—C1—H1B120.0C8—C7—C11114.6 (2)
H1A—C1—H1B120.0C6—C7—C11116.1 (2)
C1—C2—C3127.4 (3)C8—C7—H7107.8
C1—C2—H2A116.3C6—C7—H7107.8
C3—C2—H2A116.3C11—C7—H7107.8
C2—C3—C9113.5 (2)O3—C8—O1119.8 (3)
C2—C3—C4109.4 (2)O3—C8—C7129.1 (2)
C9—C3—C4113.4 (2)O1—C8—C7111.1 (2)
C2—C3—H3106.7C3—C9—H9A109.5
C9—C3—H3106.7C3—C9—H9B109.5
C4—C3—H3106.7H9A—C9—H9B109.5
C5—C4—C10110.8 (2)C3—C9—H9C109.5
C5—C4—C3111.1 (2)H9A—C9—H9C109.5
C10—C4—C3112.7 (2)H9B—C9—H9C109.5
C5—C4—H4107.3C4—C10—H10A109.5
C10—C4—H4107.3C4—C10—H10B109.5
C3—C4—H4107.3H10A—C10—H10B109.5
O1—C5—C4107.56 (19)C4—C10—H10C109.5
O1—C5—C6103.3 (2)H10A—C10—H10C109.5
C4—C5—C6117.0 (2)H10B—C10—H10C109.5
O1—C5—H5109.5C7—C11—H11A109.5
C4—C5—H5109.5C7—C11—H11B109.5
C6—C5—H5109.5H11A—C11—H11B109.5
O2—C6—C7113.9 (2)C7—C11—H11C109.5
O2—C6—C5109.0 (2)H11A—C11—H11C109.5
C7—C6—C5103.1 (2)H11B—C11—H11C109.5
O2—C6—H6110.2
C1—C2—C3—C9−0.8 (5)C4—C5—C6—O290.6 (3)
C1—C2—C3—C4126.9 (4)O1—C5—C6—C7−30.1 (2)
C2—C3—C4—C5163.2 (2)C4—C5—C6—C7−148.1 (2)
C9—C3—C4—C5−69.1 (3)O2—C6—C7—C8146.5 (2)
C2—C3—C4—C10−71.8 (3)C5—C6—C7—C828.6 (3)
C9—C3—C4—C1055.9 (3)O2—C6—C7—C11−88.0 (3)
C8—O1—C5—C4144.9 (2)C5—C6—C7—C11154.1 (2)
C8—O1—C5—C620.6 (2)C5—O1—C8—O3178.6 (2)
C10—C4—C5—O155.7 (3)C5—O1—C8—C7−2.0 (3)
C3—C4—C5—O1−178.3 (2)C6—C7—C8—O3161.8 (3)
C10—C4—C5—C6171.3 (2)C11—C7—C8—O335.3 (4)
C3—C4—C5—C6−62.6 (3)C6—C7—C8—O1−17.5 (3)
O1—C5—C6—O2−151.49 (19)C11—C7—C8—O1−144.0 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2···O3i0.842.022.830 (3)163

Symmetry codes: (i) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2861).

References

  • Abraham, L., Körner, M. & Hiersemann, M. (2004). Tetrahedron Lett.45, 3647–3650.
  • Abraham, L., Körner, M., Schwab, P. & Hiersemann, M. (2004). Adv. Synth. Catal.346, 1281–1294.
  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Evans, D. A., Bartroli, J. & Shih, T. L. (1981). J. Am. Chem. Soc.103, 2127–2129.
  • Evans, D. A., Miller, S. J., Lectka, T. & Matt, V. P. (1999). J. Am. Chem. Soc.121, 7559–7573.
  • Körner, M. & Hiersemann, M. (2006). Synlett, pp. 121–123.
  • Körner, M. & Hiersemann, M. (2007). Org. Lett.9, 4979–4982. [PubMed]
  • Mitsunobu, O. (1981). Synthesis, pp. 1–28.
  • Mitsunobu, O. & Yamada, M. (1967). Bull. Chem. Soc. Jpn, 40, 2380–2382.
  • Mitsunobu, O., Yamada, M. & Mukaiyama, T. (1967). Bull. Chem. Soc. Jpn, 40, 935–939.
  • Otera, J., Niibo, Y. & Nozaki, H. (1992). Tetrahedron Lett.33, 3655–3658.
  • Pollex, A. & Hiersemann, M. (2005). Org. Lett.7, 5705–5708. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography