PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 January 1; 65(Pt 1): o153.
Published online 2008 December 17. doi:  10.1107/S1600536808042220
PMCID: PMC2968067

4,4′-Bipyridinium bis­(2-carboxy­pyridine-3-carboxyl­ate)

Abstract

The title salt, C10H10N2 2+·2C7H4NO4 or (4,4′-bpyH2)(py-2,3-dcH)2, prepared by the reaction between pyridine-2,3-dicarboxylic acid (py-2,3-dcH2) and 4,4′-bipyridine (4,4′-bpy), consists of two anions and one centrosymmetric dication. In the crystal, there are two strong O—H(...)O hydrogen bonds involving the two carboxyl­ate groups, with an O(...)O distance of 2.478 (1) Å, and an N—H(...)N hydrogen bond between the anion and cation, with an N(...)N distance of 2.743 (1) Å. These inter­actions, along with other O—H(...)O and C—H(...)O hydrogen bonds, π–π stacking [centroid–centroid distances 3.621 (7) and 3.612 (7) Å] and ion pairing, lead to the formation of the three-dimensional structure.

Related literature

For proton-transfer ion pairs, see: Seethalakshmi et al. (2007 [triangle]); Manteghi et al. (2007 [triangle]); Aghabozorg, Manteghi & Ghadermazi (2008 [triangle]). For the use of ion pairs for the formation of metal organic frameworks, see: Aghabozorg, Manteghi & Sheshmani (2008 [triangle]). For hydrogen bonding, see: Desiraju & Steiner (1999 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o153-scheme1.jpg

Experimental

Crystal data

  • C10H10N2 2+·2C7H4NO4
  • M r = 490.42
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o153-efi1.jpg
  • a = 6.6675 (2) Å
  • b = 13.7755 (5) Å
  • c = 11.5887 (4) Å
  • β = 106.310 (2)°
  • V = 1021.56 (6) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.12 mm−1
  • T = 120 (2) K
  • 0.33 × 0.25 × 0.10 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.904, T max = 0.988
  • 18931 measured reflections
  • 2327 independent reflections
  • 2053 reflections with I > 2σ(I)
  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.105
  • S = 1.05
  • 2327 reflections
  • 163 parameters
  • H-atom parameters constrained
  • Δρmax = 0.31 e Å−3
  • Δρmin = −0.28 e Å−3

Data collection: SMART (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808042220/su2083sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808042220/su2083Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to Ilam University for financial support of this work.

supplementary crystallographic information

Comment

Up to now, pyridine-2,3-dicarboxylic acid has been used to synthesize a numer of proton transfer ion pairs, such as 1,4-Diazoniabicyclo[2.2.2]octane bis(3-carboxypyridine-2-carboxylate) 2.17-hydrate (Seethalakshmi et al., 2007), propane-1,3-diaminium pyridine-2,3-dicarboxylate monohydrate (Manteghi et al., 2007) and piperazinediium bis(2-carboxypyridine-3-carboxylate) (Aghabozorg, Manteghi & Ghadermazi, 2008). The last two have been used to synthesize some metal organic frameworks (Aghabozorg, Manteghi, Sheshmani, 2008) in which the acid acts as a mono- or dianionic fragment. In the title ion pair, (4,4'-bpyH2)(py-2,3-dcH)2, the centrosymmetric dicationic moiety is balanced by two acid moieties in the monoanionic form, as shown in Fig. 1.

In the crystal structure various O—H···O, N—H···N and C—H···O hydrogen bonds are present (Table 1 and Fig. 2). The N2—H2A···N1 hydrogen bond, classified as very strong (Desiraju & Steiner, 1999), links directly the cation and anion of the centrosymmetric unit, with a 5° deviation from linearity and a distance of 2.743 (4) Å.

There is also π-π stacking (Fig. 3) between the acid (N1/C1—C5) and the base (N2/C8—C12) rings with different symmetry codes (-x, 1 - y, 1 - z and 1 - x, 1 - y, 1 - z) at distances of 3.621 (7) and 3.612 (7) Å, respectively. As shown by the torsion angles, C2-C1-C6-O2 and C2-C1-C6-O1 [78.49 (14)° and -105.43 (3)°, respectively], it can be concluded that the carboxylate group, involving atoms O1 and O2, is almost perpendicular to the π-ring of the acid. However, torsion angles, C3-C2-C7-O4 and C3-C2-C7-O3 [15.5 (2)° and -162.6 (1)°, respectively], indicate that the carboxylate groups, involving atoms O3 and O4, are nearly coplanar with the ring.

Experimental

An aqueous solution (10 ml) of 4,4'-bipyridine (156 mg, 1 mmol) and pyridine-2,3-dicarboxylic acid (167 mg, 1 mmol) was refluxed for two hours. Yellow crystals of the title compound were obtained from the solution after two hours at room temperature.

Refinement

The H-atoms were included in calculated positions and treated as riding atoms: O-H = 0.85 Å, N-H = 0.85 Å, C-H = 0.95 Å with Uiso(H) =1.2Ueq(parent O, N or C-atom).

Figures

Fig. 1.
The molecular structure of the title compound showing the displacement ellipsoids drawn at the 50% proability level.
Fig. 2.
A view of the crystal packing diagram of the title compound with the hydrogen bonds shown as dashed lines.
Fig. 3.
The π-π stacking in the title compound, between acid (N1/C1—C5) and base (N2/C8—C12) rings with symmetry codes: right-hand-side = -x, 1 - y, 1 - z; left-hand-side = 1 - x, 1 - y, 1 - z.
Fig. 4.
The formation of the title compound.

Crystal data

C10H10N22+·2C7H4NO4F(000) = 508
Mr = 490.42Dx = 1.594 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7505 reflections
a = 6.6675 (2) Åθ = 2.4–27.5°
b = 13.7755 (5) ŵ = 0.12 mm1
c = 11.5887 (4) ÅT = 120 K
β = 106.310 (2)°Block, yellow
V = 1021.56 (6) Å30.33 × 0.25 × 0.10 mm
Z = 2

Data collection

Bruker SMART CCD area-detector diffractometer2327 independent reflections
Radiation source: fine-focus sealed tube2053 reflections with I > 2σ(I)
graphiteRint = 0.028
[var phi] and ω scansθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 2001)h = −8→8
Tmin = 0.904, Tmax = 0.988k = −17→17
18931 measured reflectionsl = −14→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.0592P)2 + 0.4079P] where P = (Fo2 + 2Fc2)/3
2327 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = −0.28 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.27652 (15)0.50895 (8)0.56149 (9)0.0150 (2)
N20.15565 (15)0.51345 (8)0.31494 (9)0.0165 (2)
H2A0.18900.51530.39130.020*
O10.38783 (15)0.30360 (6)0.50820 (8)0.0223 (2)
O20.08964 (13)0.29549 (6)0.56245 (7)0.0182 (2)
O30.45903 (15)0.26665 (6)0.77965 (8)0.0227 (2)
O40.47246 (15)0.35410 (6)0.94390 (8)0.0224 (2)
H4A0.51200.29990.97770.027*
C10.31214 (17)0.42864 (8)0.63036 (10)0.0135 (2)
C20.38515 (17)0.43413 (8)0.75593 (10)0.0137 (2)
C30.41707 (18)0.52530 (9)0.80969 (11)0.0155 (3)
H30.46470.53100.89470.019*
C40.37892 (18)0.60781 (9)0.73843 (11)0.0166 (3)
H40.39940.67070.77350.020*
C50.31027 (18)0.59644 (9)0.61490 (11)0.0161 (3)
H50.28600.65280.56580.019*
C60.26464 (18)0.33299 (9)0.56194 (10)0.0151 (3)
C70.44097 (18)0.34292 (8)0.82870 (10)0.0148 (2)
C80.13421 (18)0.59568 (9)0.25032 (11)0.0177 (3)
H80.16120.65650.29040.021*
C90.07338 (19)0.59273 (9)0.12624 (11)0.0170 (3)
H90.05950.65120.08120.020*
C100.03217 (17)0.50302 (9)0.06698 (10)0.0148 (3)
C110.05390 (19)0.41949 (9)0.13730 (11)0.0180 (3)
H110.02500.35760.10020.022*
C120.11771 (19)0.42708 (9)0.26137 (11)0.0187 (3)
H120.13470.36990.30900.022*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0158 (5)0.0161 (5)0.0131 (5)0.0009 (4)0.0039 (4)0.0014 (4)
N20.0177 (5)0.0207 (5)0.0106 (5)−0.0012 (4)0.0032 (4)0.0010 (4)
O10.0308 (5)0.0181 (5)0.0215 (5)0.0006 (4)0.0130 (4)−0.0027 (3)
O20.0197 (4)0.0178 (4)0.0156 (4)−0.0025 (3)0.0026 (3)−0.0045 (3)
O30.0355 (5)0.0131 (4)0.0151 (4)0.0017 (4)0.0002 (4)−0.0007 (3)
O40.0375 (5)0.0165 (5)0.0118 (4)0.0072 (4)0.0045 (4)0.0034 (3)
C10.0128 (5)0.0142 (5)0.0136 (5)0.0006 (4)0.0038 (4)0.0009 (4)
C20.0137 (5)0.0143 (6)0.0129 (5)0.0005 (4)0.0036 (4)0.0002 (4)
C30.0163 (5)0.0170 (6)0.0128 (5)0.0008 (4)0.0035 (4)−0.0006 (4)
C40.0183 (6)0.0137 (6)0.0174 (6)0.0001 (4)0.0045 (5)−0.0016 (4)
C50.0164 (6)0.0139 (6)0.0180 (6)0.0015 (4)0.0048 (4)0.0032 (4)
C60.0207 (6)0.0143 (6)0.0084 (5)0.0023 (4)0.0012 (4)0.0020 (4)
C70.0147 (5)0.0152 (6)0.0130 (5)−0.0013 (4)0.0013 (4)0.0000 (4)
C80.0200 (6)0.0170 (6)0.0163 (6)−0.0001 (4)0.0052 (5)−0.0002 (4)
C90.0190 (6)0.0165 (6)0.0153 (6)0.0009 (4)0.0046 (4)0.0027 (4)
C100.0120 (5)0.0187 (6)0.0135 (6)−0.0009 (4)0.0034 (4)0.0016 (4)
C110.0218 (6)0.0165 (6)0.0146 (6)−0.0036 (5)0.0033 (5)0.0001 (4)
C120.0213 (6)0.0184 (6)0.0156 (6)−0.0028 (5)0.0037 (5)0.0035 (5)

Geometric parameters (Å, °)

N1—C51.3446 (15)C3—C41.3857 (16)
N1—C11.3457 (15)C3—H30.9500
N2—C121.3330 (16)C4—C51.3840 (17)
N2—C81.3432 (16)C4—H40.9500
N2—H2A0.8501C5—H50.9500
O1—C61.2303 (15)C8—C91.3807 (17)
O2—C61.2775 (15)C8—H80.9500
O3—C71.2165 (15)C9—C101.4030 (17)
O4—C71.3009 (14)C9—H90.9500
O4—H4A0.8501C10—C111.3938 (17)
C1—C21.4009 (16)C10—C10i1.492 (2)
C1—C61.5245 (16)C11—C121.3841 (17)
C2—C31.3915 (16)C11—H110.9500
C2—C71.5007 (15)C12—H120.9500
C5—N1—C1119.02 (10)O1—C6—C1118.49 (11)
C12—N2—C8121.10 (10)O2—C6—C1113.81 (10)
C12—N2—H2A118.2O3—C7—O4124.97 (11)
C8—N2—H2A120.7O3—C7—C2120.13 (10)
C7—O4—H4A108.0O4—C7—C2114.88 (10)
N1—C1—C2121.58 (10)N2—C8—C9120.66 (11)
N1—C1—C6115.20 (10)N2—C8—H8119.7
C2—C1—C6123.21 (10)C9—C8—H8119.7
C3—C2—C1118.59 (10)C8—C9—C10119.71 (11)
C3—C2—C7121.43 (10)C8—C9—H9120.1
C1—C2—C7119.84 (10)C10—C9—H9120.1
C4—C3—C2119.61 (11)C11—C10—C9117.85 (11)
C4—C3—H3120.2C11—C10—C10i120.96 (13)
C2—C3—H3120.2C9—C10—C10i121.19 (13)
C5—C4—C3118.40 (11)C12—C11—C10119.75 (11)
C5—C4—H4120.8C12—C11—H11120.1
C3—C4—H4120.8C10—C11—H11120.1
N1—C5—C4122.79 (11)N2—C12—C11120.93 (11)
N1—C5—H5118.6N2—C12—H12119.5
C4—C5—H5118.6C11—C12—H12119.5
O1—C6—O2127.57 (11)
C5—N1—C1—C2−0.59 (17)C2—C1—C6—O278.49 (14)
C5—N1—C1—C6178.63 (10)C3—C2—C7—O3−162.59 (11)
N1—C1—C2—C31.26 (17)C1—C2—C7—O313.12 (17)
C6—C1—C2—C3−177.90 (10)C3—C2—C7—O415.52 (16)
N1—C1—C2—C7−174.57 (10)C1—C2—C7—O4−168.77 (11)
C6—C1—C2—C76.27 (17)C12—N2—C8—C9−0.43 (18)
C1—C2—C3—C4−0.83 (17)N2—C8—C9—C100.43 (18)
C7—C2—C3—C4174.93 (11)C8—C9—C10—C110.31 (18)
C2—C3—C4—C5−0.21 (17)C8—C9—C10—C10i−179.48 (13)
C1—N1—C5—C4−0.53 (18)C9—C10—C11—C12−1.05 (18)
C3—C4—C5—N10.93 (18)C10i—C10—C11—C12178.75 (13)
N1—C1—C6—O175.36 (14)C8—N2—C12—C11−0.34 (18)
C2—C1—C6—O1−105.43 (13)C10—C11—C12—N21.09 (19)
N1—C1—C6—O2−100.72 (12)

Symmetry codes: (i) −x, −y+1, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2A···N10.851.902.7430 (14)175
O4—H4A···O2ii0.851.642.4782 (12)171
C3—H3···O4iii0.952.403.2055 (15)143
C4—H4···O2iv0.952.553.4324 (15)155
C9—H9···O1v0.952.413.3405 (15)166
C11—H11···O1vi0.952.523.4610 (15)170
C12—H12···O3vi0.952.192.9004 (15)131

Symmetry codes: (ii) x+1/2, −y+1/2, z+1/2; (iii) −x+1, −y+1, −z+2; (iv) −x+1/2, y+1/2, −z+3/2; (v) −x+1/2, y+1/2, −z+1/2; (vi) x−1/2, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2083).

References

  • Aghabozorg, H., Manteghi, F. & Ghadermazi, M. (2008). Acta Cryst. E64, o230. [PMC free article] [PubMed]
  • Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran Chem. Soc 5, 184–227.
  • Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2007). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology New York: Oxford University Press Inc.
  • Manteghi, F., Ghadermazi, M. & Aghabozorg, H. (2007). Acta Cryst. E63, o2809.
  • Seethalakshmi, P. G., Ramadevi, P., Kumaresan, S. & Harrison, W. T. A. (2007). Acta Cryst. E63, o4837.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography