PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 January 1; 65(Pt 1): o152.
Published online 2008 December 17. doi:  10.1107/S1600536808039457
PMCID: PMC2968066

4-Meth­oxy-N-phenyl­aniline

Abstract

In the mol­ecule of the title compound, C13H13NO, the two benzene rings are oriented at a dihedral angle of 59.9 (2)°. In the crystal structure, the benzene rings of neighbouring mol­ecules are oriented nearly parallel or perpendicular, making dihedral angles of 2.8 (2) and 79.5 (2)°, respectively. The crystal structure is stabilized by a network of C—H(...)π and N—H(...)π inter­actions.

Related literature

For general background, see: Acheson (1973 [triangle]); Gatto et al. (2006 [triangle]); Li et al. (2002 [triangle]); Oettmeier & Renger (1980 [triangle]); Razavi & McCapra (2000a [triangle],b [triangle]); Steiner (2000 [triangle]); Takahashi et al. (2001 [triangle]); Velusamy et al. (2005 [triangle]); Zomer & Jacquemijns (2001 [triangle]). For related structures, see: Rodriguez & Bunge (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o152-scheme1.jpg

Experimental

Crystal data

  • C13H13NO
  • M r = 199.24
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o152-efi3.jpg
  • a = 15.090 (3) Å
  • b = 18.394 (4) Å
  • c = 7.596 (2) Å
  • V = 2108.4 (8) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 295 (2) K
  • 0.05 × 0.03 × 0.02 mm

Data collection

  • Kuma KM-4 diffractometer
  • Absorption correction: none
  • 2443 measured reflections
  • 1851 independent reflections
  • 1005 reflections with I > 2σ(I)
  • R int = 0.035
  • 3 standard reflections every 200 reflections intensity decay: 0.5%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044
  • wR(F 2) = 0.131
  • S = 0.99
  • 1851 reflections
  • 138 parameters
  • H-atom parameters constrained
  • Δρmax = 0.16 e Å−3
  • Δρmin = −0.15 e Å−3

Data collection: KM-4 Software (Oxford Diffraction, 2003 [triangle]); cell refinement: KM-4 Software; data reduction: KM-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPII (Johnson, 1976 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003 [triangle]).

Table 1
C—H(...)π and N—H(...)π inter­actions (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808039457/hk2570sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808039457/hk2570Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This study was financed by the State Funds for Scientific Research (grant No. N204 123 32/3143, contract No. 3143/H03/2007/32 of the Polish Ministry of Research and Higher Education) for the period 2007–2010.

supplementary crystallographic information

Comment

Diphenylamines are an important class of aromatic amines widely employed in organic (Acheson, 1973) and organometallic (Li et al., 2002) syntheses. They exhibit interesting biological activities (Oettmeier & Renger, 1980). Some of them are known to be useful antioxidants for modern lubricants (Gatto et al., 2006) or as fragments of molecules with interesting electro-optical properties (Velusamy et al., 2005). Diphenylamines are precursors of acridine-9-carboxylic acids (Acheson, 1973; Zomer & Jacquemijns, 2001), which are starting materials for syntheses of acridinium chemiluminogenic tracers (Razavi & McCapra, 2000a,b; Zomer & Jacquemijns, 2001). The presence of a methoxy group in such tracers enhances their stability in an aquatic environment and brings about a red shifting of the emitted light. The latter feature should increase the potential applicability of acridinium chemiluminogens in immunoassays (Zomer & Jacquemijns, 2001).

In the molecule of the title compound (Fig. 1) the bond lengths and angles are in accordance with the corresponding values in diphenylamine (Rodriguez & Bunge, 2003). Rings A (C1-C6) and B (C8-C13) are planar and oriented at a dihedral angle of 59.9 (2)°.

In the crystal structure, benzene ring systems of neighbouring molecules are oriented nearly parallel or perpendicular. The respective angles between them are 2.8 (2)° and 79.5 (2)°. The crystal structure of the title compound is stabilized by a network of specific C—H···π and N—H···π interactions (Fig. 2 and Table 1) which exhibit an attractive nature (Steiner, 2000; Takahashi et al., 2001), as well as by non-specific dispersive interactions.

Experimental

The title compound was synthesized by the condensation of 4-methoxy-benzenamine and bromobenzene in the presence of anhydrous potassium carbonate and a catalytic amount of copper iodide (yield; 75%) (Zomer & Jacquemijns, 2001). Elemental analysis (% found/calculated): C 78.16/78.36, H 6.58/6.72, N 7.02/7.03. Colorless crystals (m.p. 379-380 K) suitable for X-ray analysis were grown from absolute ethanol solution.

Refinement

H atoms were positioned geometrically, with N-H = 0.86 Å and C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 25% probability level. Cg1 and Cg2 denote the ring centroids.
Fig. 2.
The arrangement of the molecules in the crystal packing, viewed approximately along the a axis. The C—H···π and N—H···π interactions are represented by dotted lines. H atoms ...

Crystal data

C13H13NOF(000) = 848
Mr = 199.24Dx = 1.255 Mg m3
Orthorhombic, PccnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ab 2acCell parameters from 50 reflections
a = 15.090 (3) Åθ = 2.2–25°
b = 18.394 (4) ŵ = 0.08 mm1
c = 7.596 (2) ÅT = 295 K
V = 2108.4 (8) Å3Block, colorless
Z = 80.05 × 0.03 × 0.02 mm

Data collection

Kuma KM-4 diffractometerRint = 0.035
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 2.2°
graphiteh = 0→17
θ/2θ scansk = −21→0
2443 measured reflectionsl = −9→2
1851 independent reflections3 standard reflections every 200 reflections
1005 reflections with I > 2σ(I) intensity decay: 0.5%

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.131w = 1/[σ2(Fo2) + (0.081P)2 + 0.0542P] where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max < 0.001
1851 reflectionsΔρmax = 0.16 e Å3
138 parametersΔρmin = −0.15 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.015 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.49051 (14)0.32843 (9)0.6655 (3)0.0526 (6)
C20.52660 (14)0.36650 (10)0.8048 (3)0.0533 (5)
H20.58610.37940.80100.064*
C30.47688 (12)0.38576 (10)0.9489 (3)0.0500 (5)
H30.50250.41171.04090.060*
C40.38875 (13)0.36634 (10)0.9558 (3)0.0491 (5)
C50.35215 (14)0.32732 (10)0.8191 (3)0.0553 (6)
H50.29300.31330.82440.066*
C60.40192 (15)0.30921 (10)0.6763 (3)0.0577 (6)
H60.37600.28350.58430.069*
N70.54179 (14)0.30655 (9)0.5208 (2)0.0679 (6)
H70.54150.26100.49540.082*
C80.59269 (13)0.35133 (11)0.4155 (3)0.0488 (5)
C90.59081 (13)0.42662 (10)0.4292 (3)0.0535 (5)
H90.55610.44860.51530.064*
C100.63953 (16)0.46850 (13)0.3170 (3)0.0701 (7)
H100.63770.51880.32790.084*
C110.69087 (19)0.43785 (18)0.1892 (3)0.0882 (9)
H110.72330.46690.11240.106*
C120.69399 (16)0.36363 (17)0.1759 (3)0.0809 (8)
H120.72910.34220.08970.097*
C130.64619 (14)0.32079 (13)0.2877 (3)0.0633 (6)
H130.64970.27050.27770.076*
O140.33254 (9)0.38212 (8)1.0914 (2)0.0671 (5)
C150.36725 (18)0.41960 (15)1.2379 (3)0.0809 (7)
H15A0.32200.42461.32600.121*
H15B0.38710.46691.20180.121*
H15C0.41620.39281.28570.121*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0758 (14)0.0385 (10)0.0434 (11)−0.0006 (9)0.0030 (11)0.0020 (9)
C20.0537 (11)0.0521 (11)0.0542 (13)−0.0044 (9)0.0006 (10)−0.0014 (9)
C30.0555 (11)0.0497 (10)0.0448 (11)−0.0027 (9)−0.0027 (10)−0.0019 (9)
C40.0534 (11)0.0462 (10)0.0475 (11)0.0004 (9)0.0005 (10)0.0042 (9)
C50.0531 (12)0.0536 (11)0.0593 (14)−0.0081 (9)−0.0085 (11)0.0039 (10)
C60.0764 (15)0.0458 (11)0.0510 (13)−0.0124 (10)−0.0146 (11)0.0016 (10)
N70.1075 (14)0.0417 (8)0.0546 (11)−0.0010 (9)0.0181 (11)−0.0072 (8)
C80.0529 (11)0.0553 (11)0.0383 (10)0.0050 (8)−0.0078 (9)−0.0012 (9)
C90.0610 (12)0.0523 (11)0.0471 (12)0.0029 (9)−0.0039 (10)0.0022 (10)
C100.0821 (16)0.0706 (14)0.0577 (15)−0.0181 (12)−0.0034 (13)0.0091 (12)
C110.0803 (17)0.125 (2)0.0595 (17)−0.0421 (17)0.0081 (14)−0.0006 (16)
C120.0543 (13)0.126 (2)0.0622 (16)−0.0077 (14)0.0080 (12)−0.0266 (15)
C130.0589 (13)0.0755 (14)0.0556 (13)0.0104 (11)−0.0050 (11)−0.0181 (12)
O140.0578 (9)0.0794 (10)0.0642 (10)−0.0026 (7)0.0064 (7)−0.0103 (8)
C150.0766 (15)0.1028 (18)0.0634 (16)0.0028 (14)0.0076 (14)−0.0203 (15)

Geometric parameters (Å, °)

C1—C21.381 (3)C8—C91.389 (3)
C1—C61.385 (3)C9—C101.364 (3)
C1—N71.403 (3)C9—H90.9300
C2—C31.373 (3)C10—C111.364 (4)
C2—H20.9300C10—H100.9300
C3—C41.378 (3)C11—C121.370 (4)
C3—H30.9300C11—H110.9300
C4—O141.365 (2)C12—C131.365 (3)
C4—C51.378 (3)C12—H120.9300
C5—C61.361 (3)C13—H130.9300
C5—H50.9300O14—C151.410 (3)
C6—H60.9300C15—H15A0.9600
N7—C81.381 (3)C15—H15B0.9600
N7—H70.8600C15—H15C0.9600
C8—C131.382 (3)
C2—C1—C6117.68 (19)C13—C8—C9118.0 (2)
C2—C1—N7121.9 (2)C10—C9—C8120.4 (2)
C6—C1—N7120.36 (19)C10—C9—H9119.8
C3—C2—C1121.74 (19)C8—C9—H9119.8
C3—C2—H2119.1C9—C10—C11121.1 (2)
C1—C2—H2119.1C9—C10—H10119.4
C2—C3—C4119.42 (19)C11—C10—H10119.4
C2—C3—H3120.3C10—C11—C12119.0 (2)
C4—C3—H3120.3C10—C11—H11120.5
O14—C4—C3125.00 (18)C12—C11—H11120.5
O14—C4—C5115.48 (17)C13—C12—C11120.8 (2)
C3—C4—C5119.52 (19)C13—C12—H12119.6
C6—C5—C4120.48 (18)C11—C12—H12119.6
C6—C5—H5119.8C12—C13—C8120.7 (2)
C4—C5—H5119.8C12—C13—H13119.6
C5—C6—C1121.15 (19)C8—C13—H13119.6
C5—C6—H6119.4C4—O14—C15117.9 (2)
C1—C6—H6119.4O14—C15—H15A109.5
C1—N7—C8126.1 (2)O14—C15—H15B109.5
C8—N7—H7116.9H15A—C15—H15B109.5
C1—N7—H7116.9O14—C15—H15C109.5
N7—C8—C13119.30 (19)H15A—C15—H15C109.5
N7—C8—C9122.67 (18)H15B—C15—H15C109.5
C6—C1—C2—C3−0.8 (3)C1—N7—C8—C13174.0 (2)
N7—C1—C2—C3−177.82 (17)C1—N7—C8—C9−7.8 (3)
C1—C2—C3—C40.4 (3)N7—C8—C9—C10−177.21 (19)
C2—C3—C4—O14179.92 (17)C13—C8—C9—C101.1 (3)
C2—C3—C4—C50.6 (3)C8—C9—C10—C110.1 (3)
O14—C4—C5—C6179.34 (17)C9—C10—C11—C12−0.9 (4)
C3—C4—C5—C6−1.3 (3)C10—C11—C12—C130.4 (4)
C4—C5—C6—C10.9 (3)C11—C12—C13—C80.8 (4)
C2—C1—C6—C50.1 (3)N7—C8—C13—C12176.8 (2)
N7—C1—C6—C5177.18 (18)C9—C8—C13—C12−1.5 (3)
C2—C1—N7—C8−55.5 (3)C3—C4—O14—C15−1.6 (3)
C6—C1—N7—C8127.6 (2)C5—C4—O14—C15177.7 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C3—H3···Cg2i0.932.913.671 (2)139
N7—H7···Cg1ii0.862.883.593 (2)142
C10—H10···Cg1iii0.932.923.723 (3)145

Symmetry codes: (i) x, y, z+1; (ii) x, −y+1/2, z−1/2; (iii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2570).

References

  • Acheson, R. M. (1973). Acridines, 2nd ed. New York: Interscience.
  • Gatto, V. J., Elnagar, H. Y., Moehle, W. E. & Schneller, E. R. (2006). Lubrication Sci.19, 25–40.
  • Johnson, C. K. (1976). ORTEPII Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  • Li, H., Yao, Y., Shen, Q. & Weng, L. (2002). Organometallics, 21, 2529–2532.
  • Oettmeier, W. & Renger, G. (1980). Biochim. Biophys. Acta, 593, 113–124. [PubMed]
  • Oxford Diffraction (2003). KM-4 Software Oxford Diffraction, Wrocław, Poland.
  • Razavi, Z. & McCapra, F. (2000a). Luminescence, 15, 239–245. [PubMed]
  • Razavi, Z. & McCapra, F. (2000b). Luminescence, 15, 245–249. [PubMed]
  • Rodriguez, M. A. & Bunge, S. D. (2003). Acta Cryst. E59, o1123–o1125.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Steiner, T. (2000). Acta Cryst. C56, 874–875. [PubMed]
  • Takahashi, O., Kohno, Y., Iwasaki, S., Saito, K., Iwaoka, M., Tomoda, S., Umezawa, Y., Tsuboyama, S. & Nishio, M. (2001). Bull. Chem. Soc. Jpn, 74, 2421–2430.
  • Velusamy, M., Justin Thomas, K. R., Lin, J. T. & Ven, Y. S. (2005). Tetrahedron Lett.46, 7647–7651.
  • Zomer, G. & Jacquemijns, M. (2001). Chemiluminescence in Analytical Chemistry, edited by A. M. Garcia-Campana & W. R. G. Baeyens, pp. 529–549. New York: Marcel Dekker.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography