PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 January 1; 65(Pt 1): o150.
Published online 2008 December 17. doi:  10.1107/S1600536808042372
PMCID: PMC2968064

3-(4-tert-Butyl­phen­yl)-1-(4-fluoro­phen­yl)-3-hydroxy­prop-2-en-1-one

Abstract

The title mol­ecule, C19H19FO2, exits in the enol form with a dihedral angle of 33.06 (8)° between the two benzene rings. The mol­ecular conformation is stabilized in part by an intra­molecular O—H(...)O hydrogen bond.

Related literature

For background information on 1,3-diketones, see: Baskar & Roesky (2005 [triangle]); Bassett et al. (2004 [triangle]); Bertolasi et al. (1991 [triangle]); Jang et al. (2006 [triangle]); Soldatov et al. (2003 [triangle]); Vila et al. (1991 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o150-scheme1.jpg

Experimental

Crystal data

  • C19H19FO2
  • M r = 298.34
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o150-efi1.jpg
  • a = 9.8349 (12) Å
  • b = 10.0163 (13) Å
  • c = 16.232 (2) Å
  • β = 97.788 (2)°
  • V = 1584.3 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 298 (2) K
  • 0.20 × 0.10 × 0.10 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.993, T max = 0.995
  • 12039 measured reflections
  • 3099 independent reflections
  • 2199 reflections with I > 2σ(I)
  • R int = 0.074

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050
  • wR(F 2) = 0.131
  • S = 1.00
  • 3099 reflections
  • 205 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.17 e Å−3
  • Δρmin = −0.19 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1999 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808042372/lh2743sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808042372/lh2743Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to Hubei Normal University for financial support.

supplementary crystallographic information

Comment

1,3-Diketones are interesting due to their enolic tautomeric forms and their ability to form strong intermolecular or intramolecular hydrogen bonds (Bertolasi et al., 1991; Vila et al., 1991). They are used widely in the chemistry of metallocomplexes (Baskar et al., 2005; Bassett et al., 2004; Jang et al., 2006; Soldatov et al., 2003). The title compound (I) (Fig. 1), is in the enol form stabilized by an intramolecular O-H···O hydrogen bond (see Table 1).

Experimental

1-(4-fluorophenyl)ethanone (1.38 g, 0.01 mol), methyl 4-tert-butylbenzoate (1.92 g, 0.01 mol), NaNH2 (0.78 g, 0.02 mol) and dry ether (60 ml) were placed into round bottom flask. The mixture was stirred for 6 h at room temperature under a blanket of nitrogen, acidified with dilute hydrochloric acid, and stirring was continued until all solids dissolved. The ether layer was separated and washed with saturated NaHCO3 solution, dried over anhydrous Na2SO4 and was removed by evaporation. The residual solid was recrystallized from ethanol solution to give the title compound (I) (yield 1.78 g, 59.6%, m.p. 388 K). Crystals suitable for X-ray diffraction were grown by slow evaporation of a CHCl3—EtOH (1:4) solution of the title compound at room temperature.

Refinement

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.93 to 0.96 Å, and with Uiso(H) = 1.2 Ueq(C). The H atom of the hydroxyl group was located in a difference Fourier map and its position was refined freely, with Uiso(H) = 1.5 Uiso(O).

Figures

Fig. 1.
The molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level. The dashed line indicates a intramolecular hydrogen bond.

Crystal data

C19H19FO2F(000) = 632
Mr = 298.34Dx = 1.251 Mg m3
Monoclinic, P21/nMelting point: 388 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 9.8349 (12) ÅCell parameters from 3223 reflections
b = 10.0163 (13) Åθ = 2.3–22.9°
c = 16.232 (2) ŵ = 0.09 mm1
β = 97.788 (2)°T = 298 K
V = 1584.3 (3) Å3Block, colorless
Z = 40.20 × 0.10 × 0.10 mm

Data collection

Bruker SMART CCD diffractometer3099 independent reflections
Radiation source: fine-focus sealed tube2199 reflections with I > 2σ(I)
graphiteRint = 0.074
[var phi] and ω scansθmax = 26.0°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −11→12
Tmin = 0.993, Tmax = 0.995k = −12→12
12039 measured reflectionsl = −19→19

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.00w = 1/[σ2(Fo2) + (0.07P)2] where P = (Fo2 + 2Fc2)/3
3099 reflections(Δ/σ)max = 0.001
205 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = −0.18 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.12996 (18)0.09274 (19)−0.07276 (10)0.0599 (5)
C20.0803 (2)0.2198 (2)−0.08119 (10)0.0666 (5)
H20.05220.2559−0.13350.080*
C30.07296 (18)0.29335 (17)−0.01033 (9)0.0587 (5)
H30.04010.3805−0.01500.070*
C40.11376 (15)0.23969 (16)0.06796 (9)0.0457 (4)
C50.16498 (16)0.11083 (17)0.07303 (9)0.0545 (4)
H50.19430.07410.12500.065*
C60.17340 (17)0.03602 (18)0.00290 (10)0.0596 (5)
H60.2076−0.05060.00680.071*
C70.09992 (16)0.32242 (16)0.14225 (9)0.0491 (4)
C80.11727 (16)0.27023 (16)0.22333 (9)0.0499 (4)
H80.14640.18240.23210.060*
C90.09179 (16)0.34703 (16)0.29012 (9)0.0498 (4)
C100.09963 (16)0.29479 (16)0.37555 (9)0.0475 (4)
C110.01481 (18)0.34617 (16)0.42948 (10)0.0561 (4)
H11−0.04590.41480.41180.067*
C120.01961 (17)0.29659 (17)0.50883 (10)0.0565 (4)
H12−0.03960.33190.54320.068*
C130.10956 (15)0.19580 (15)0.53959 (9)0.0464 (4)
C140.19521 (17)0.14742 (17)0.48502 (9)0.0557 (4)
H140.25800.08080.50320.067*
C150.19034 (17)0.19472 (17)0.40495 (9)0.0541 (4)
H150.24880.15890.37020.065*
C160.11634 (16)0.14446 (16)0.62880 (9)0.0512 (4)
C17−0.02548 (19)0.1488 (2)0.65807 (11)0.0744 (6)
H17A−0.05440.24000.66140.112*
H17B−0.02050.10800.71190.112*
H17C−0.09030.10120.61930.112*
C180.2134 (2)0.2360 (2)0.68505 (10)0.0774 (6)
H18A0.30200.23640.66640.116*
H18B0.22210.20390.74120.116*
H18C0.17700.32500.68270.116*
C190.1691 (2)0.00150 (18)0.63681 (12)0.0791 (6)
H19A0.1140−0.05410.59730.119*
H19B0.1639−0.03050.69200.119*
H19C0.2628−0.00100.62620.119*
F10.13561 (14)0.01881 (12)−0.14199 (6)0.0933 (4)
O10.06597 (13)0.44469 (12)0.12968 (7)0.0671 (4)
O20.05431 (14)0.47163 (12)0.27994 (8)0.0720 (4)
H2A0.050 (2)0.485 (2)0.2088 (15)0.108*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0655 (12)0.0679 (12)0.0478 (9)0.0042 (9)0.0136 (8)−0.0004 (8)
C20.0872 (14)0.0695 (13)0.0436 (9)0.0131 (10)0.0110 (8)0.0131 (8)
C30.0709 (12)0.0531 (10)0.0526 (10)0.0069 (9)0.0105 (8)0.0105 (8)
C40.0383 (9)0.0509 (10)0.0480 (9)−0.0008 (7)0.0060 (6)0.0057 (7)
C50.0546 (10)0.0619 (11)0.0458 (9)0.0075 (8)0.0026 (7)0.0083 (8)
C60.0628 (12)0.0584 (11)0.0574 (10)0.0130 (9)0.0080 (8)0.0037 (8)
C70.0445 (9)0.0480 (10)0.0540 (9)−0.0026 (7)0.0035 (7)0.0054 (7)
C80.0547 (10)0.0466 (10)0.0475 (9)0.0040 (8)0.0040 (7)0.0024 (7)
C90.0493 (10)0.0455 (10)0.0525 (9)−0.0028 (7)−0.0003 (7)−0.0013 (7)
C100.0484 (9)0.0456 (9)0.0468 (8)−0.0007 (7)0.0004 (7)−0.0062 (7)
C110.0625 (11)0.0490 (10)0.0560 (10)0.0152 (8)0.0049 (8)0.0000 (7)
C120.0612 (11)0.0559 (11)0.0537 (10)0.0124 (9)0.0128 (8)−0.0052 (8)
C130.0465 (9)0.0443 (9)0.0475 (8)−0.0021 (7)0.0028 (7)−0.0069 (7)
C140.0547 (10)0.0603 (11)0.0507 (9)0.0163 (8)0.0017 (7)0.0021 (7)
C150.0531 (10)0.0615 (11)0.0480 (9)0.0132 (8)0.0075 (7)−0.0049 (7)
C160.0502 (10)0.0554 (10)0.0471 (9)−0.0006 (8)0.0029 (7)−0.0021 (7)
C170.0699 (13)0.0938 (15)0.0614 (11)−0.0013 (11)0.0153 (9)0.0105 (10)
C180.0857 (14)0.0914 (15)0.0515 (10)−0.0224 (12)−0.0039 (9)−0.0023 (9)
C190.1093 (17)0.0651 (13)0.0644 (12)0.0161 (12)0.0167 (11)0.0115 (9)
F10.1407 (12)0.0884 (9)0.0527 (6)0.0260 (7)0.0201 (6)−0.0074 (5)
O10.0956 (10)0.0484 (7)0.0566 (7)0.0054 (7)0.0083 (6)0.0085 (5)
O20.1083 (11)0.0459 (7)0.0598 (8)0.0109 (7)0.0044 (7)−0.0007 (5)

Geometric parameters (Å, °)

C1—F11.3532 (19)C11—H110.9300
C1—C21.364 (3)C12—C131.390 (2)
C1—C61.368 (2)C12—H120.9300
C2—C31.376 (2)C13—C141.390 (2)
C2—H20.9300C13—C161.530 (2)
C3—C41.388 (2)C14—C151.378 (2)
C3—H30.9300C14—H140.9300
C4—C51.384 (2)C15—H150.9300
C4—C71.485 (2)C16—C191.523 (2)
C5—C61.375 (2)C16—C181.533 (2)
C5—H50.9300C16—C171.534 (2)
C6—H60.9300C17—H17A0.9600
C7—O11.2784 (19)C17—H17B0.9600
C7—C81.405 (2)C17—H17C0.9600
C8—C91.380 (2)C18—H18A0.9600
C8—H80.9300C18—H18B0.9600
C9—O21.3054 (19)C18—H18C0.9600
C9—C101.474 (2)C19—H19A0.9600
C10—C151.383 (2)C19—H19B0.9600
C10—C111.387 (2)C19—H19C0.9600
C11—C121.375 (2)O2—H2A1.16 (2)
F1—C1—C2118.81 (15)C14—C13—C12115.83 (14)
F1—C1—C6118.39 (16)C14—C13—C16122.26 (14)
C2—C1—C6122.81 (16)C12—C13—C16121.89 (14)
C1—C2—C3118.32 (15)C15—C14—C13122.32 (15)
C1—C2—H2120.8C15—C14—H14118.8
C3—C2—H2120.8C13—C14—H14118.8
C2—C3—C4121.11 (16)C14—C15—C10120.86 (15)
C2—C3—H3119.4C14—C15—H15119.6
C4—C3—H3119.4C10—C15—H15119.6
C5—C4—C3118.25 (14)C19—C16—C13111.57 (14)
C5—C4—C7123.03 (13)C19—C16—C18109.51 (15)
C3—C4—C7118.72 (14)C13—C16—C18107.85 (13)
C6—C5—C4121.43 (14)C19—C16—C17108.31 (15)
C6—C5—H5119.3C13—C16—C17111.03 (13)
C4—C5—H5119.3C18—C16—C17108.51 (15)
C1—C6—C5118.07 (16)C16—C17—H17A109.5
C1—C6—H6121.0C16—C17—H17B109.5
C5—C6—H6121.0H17A—C17—H17B109.5
O1—C7—C8120.13 (14)C16—C17—H17C109.5
O1—C7—C4117.12 (13)H17A—C17—H17C109.5
C8—C7—C4122.71 (14)H17B—C17—H17C109.5
C9—C8—C7121.11 (15)C16—C18—H18A109.5
C9—C8—H8119.4C16—C18—H18B109.5
C7—C8—H8119.4H18A—C18—H18B109.5
O2—C9—C8120.78 (14)C16—C18—H18C109.5
O2—C9—C10115.86 (14)H18A—C18—H18C109.5
C8—C9—C10123.32 (15)H18B—C18—H18C109.5
C15—C10—C11117.77 (15)C16—C19—H19A109.5
C15—C10—C9122.06 (14)C16—C19—H19B109.5
C11—C10—C9120.17 (15)H19A—C19—H19B109.5
C12—C11—C10120.64 (15)C16—C19—H19C109.5
C12—C11—H11119.7H19A—C19—H19C109.5
C10—C11—H11119.7H19B—C19—H19C109.5
C11—C12—C13122.56 (15)C7—O1—H2A101.2 (10)
C11—C12—H12118.7C7—O1—H2A101.2 (10)
C13—C12—H12118.7C9—O2—H2A102.1 (11)
F1—C1—C2—C3178.96 (17)O2—C9—C10—C1129.4 (2)
C6—C1—C2—C3−0.5 (3)C8—C9—C10—C11−148.40 (16)
C1—C2—C3—C4−0.5 (3)C15—C10—C11—C12−1.3 (3)
C2—C3—C4—C51.3 (3)C9—C10—C11—C12178.87 (15)
C2—C3—C4—C7−178.35 (16)C10—C11—C12—C131.2 (3)
C3—C4—C5—C6−1.2 (2)C11—C12—C13—C140.0 (3)
C7—C4—C5—C6178.49 (15)C11—C12—C13—C16178.28 (15)
F1—C1—C6—C5−178.81 (15)C12—C13—C14—C15−0.9 (3)
C2—C1—C6—C50.6 (3)C16—C13—C14—C15−179.20 (15)
C4—C5—C6—C10.2 (3)C13—C14—C15—C100.7 (3)
C5—C4—C7—O1172.32 (15)C11—C10—C15—C140.4 (3)
C3—C4—C7—O1−8.0 (2)C9—C10—C15—C14−179.79 (15)
C5—C4—C7—C8−10.2 (2)C14—C13—C16—C19−27.3 (2)
C3—C4—C7—C8169.45 (15)C12—C13—C16—C19154.50 (16)
O1—C7—C8—C93.2 (2)C14—C13—C16—C1893.01 (19)
C4—C7—C8—C9−174.20 (14)C12—C13—C16—C18−85.19 (19)
C7—C8—C9—O2−1.8 (2)C14—C13—C16—C17−148.23 (16)
C7—C8—C9—C10175.89 (14)C12—C13—C16—C1733.6 (2)
O2—C9—C10—C15−150.37 (16)C8—C7—O1—H2A−3.3 (9)
C8—C9—C10—C1531.8 (2)C4—C7—O1—H2A174.2 (9)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2A···O11.16 (2)1.38 (2)2.4720 (16)154 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2743).

References

  • Baskar, V. & Roesky, P. W. (2005). Z. Anorg. Allg. Chem.631, 2782–2785.
  • Bassett, A. P., Magennis, S. W., Glover, P. B., Lewis, D. J., Spencer, N., Parsons, S., Williams, R. M., Cola, L. D. & Pikramenou, Z. (2004). J. Am. Chem. Soc.126, 9413–9424. [PubMed]
  • Bertolasi, V., Cilli, P., Ferretti, V. & Gilli, G. (1991). J. Am. Chem. Soc.113, 4917–4925.
  • Bruker (1997). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (1999). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Jang, H., Shin, C. H., Jung, B. J., Kim, D. H., Shim, H. K. & Do, Y. (2006). Eur. J. Inorg. Chem.4, 718–725.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Soldatov, D. V., Zanina, A. S., Enright, G. D., Ratcliffe, C. I. & Ripmeester, J. A. (2003). Cryst. Growth & Des.3, 1005–1013.
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Vila, A. J., Lagier, C. M. & Olivieri, A. C. (1991). J. Phys. Chem.95, 5069–5073.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography