PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 January 1; 65(Pt 1): o144–o145.
Published online 2008 December 17. doi:  10.1107/S1600536808041901
PMCID: PMC2968060

Ethyl 4-{1-[(2,4-dinitro­phen­yl)hydrazono]eth­yl}-5-(2-naphthyl­methoxy­meth­yl)isoxazole-3-carboxyl­ate

Abstract

The title compound, C26H23N5O8, was prepared and its structure investigated to further develop a working hypothesis for the essential binding pharmacophore for ligands of the System Xc- transporter [Patel et al. (2004 [triangle]). Neuropharmacology, 46, 273–284]. The hydrazone group displays an E geometry and the isoxazole double bond and C=N group of the hydrazone are in an s-cis relationship. The secondary amino NH group forms an intra­molecular N—H(...)O hydrogen bond to a ring nitro group. There is a dihedral angle of 44.27 (5)° between the isoxazole plane and the hydrazone group plane.

Related literature

For a related structure, see: Burkhart et al. (1999 [triangle], 2001 [triangle]). For general background, see: Davis et al. (1993 [triangle]); Honore & Lauridsen (1980 [triangle]); Krogsgaard-Larsen, Honore, Hansen, Curtis & Lodge (1980 [triangle]); Natale et al. (2006 [triangle]); Patel et al. (2004 [triangle], 2006 [triangle]); Stables & Kupferberg (2008 [triangle]); Twamley et al. (2007 [triangle]); Zhou & Natale (1998 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o144-scheme1.jpg

Experimental

Crystal data

  • C26H23N5O8
  • M r = 533.49
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o144-efi1.jpg
  • a = 7.0839 (6) Å
  • b = 12.176 (1) Å
  • c = 14.184 (2) Å
  • α = 90.581 (1)°
  • β = 95.925 (2)°
  • γ = 99.251 (2)°
  • V = 1200.7 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 90 (2) K
  • 0.47 × 0.33 × 0.30 mm

Data collection

  • Bruker SMART APEX diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2007 [triangle]) T min = 0.949, T max = 0.971
  • 18560 measured reflections
  • 4357 independent reflections
  • 4009 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.092
  • S = 1.02
  • 4357 reflections
  • 354 parameters
  • H-atom parameters constrained
  • Δρmax = 0.28 e Å−3
  • Δρmin = −0.23 e Å−3

Data collection: SMART (Bruker, 2007 [triangle]); cell refinement: SAINT-Plus (Bruker, 2007 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: XS in SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: XL in SHELXTL; molecular graphics: XP in SHELXTL; software used to prepare material for publication: publCIF (Westrip, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808041901/hg2449sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808041901/hg2449Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank NIH for grants NS038444(NN), NINDS NS30570 (RJB), P20RR015583 (RJB, SP, NN), and the Malcolm and Carol Renfrew Scholarship (MIS, TR). The Bruker SMART APEX diffraction facility was established at the University of Idaho with the assistance of the NSF–EPSCoR program and the M. J. Murdock Charitable Trust, Vancouver, WA, USA.

supplementary crystallographic information

Comment

In the course of our continuing studies on the synthesis and structure activity relationships of analogs of AMPA (II) (see Figure 2; Krogsgaard-Larsen et al., 1980; Honore, & Lauridsen, 1980) for glutamate receptors and transporters (Natale et al., 2006), we have found that a simple isoxazole hydrazone (IIIb) (Burkhart et al., 1999) exhibited significant binding at the System Xc- transporter (SXc-) (Patel et al., 2004), and that this correlated with anticonvulsant activity in vivo (Stables & Kupferberg, 2008). Since the three dimensional structure of the SXc- is unsolved at this writing we have developed a preliminary pharmacophore model for ligand binding which indicates that lipophilic groups appear to be tolerated (Patel et al., 2006), which is also promising from the perspective of increasing the likelihood of delivering such ligands past the blood brain barrier. Therefore we carried out the synthesis of (Ia) and also examined its structure, see Figure 1. We had previously examined the structure of (IIIa), (see Figure 2) and found it adopted an s-trans-E geometry at the juncture between the isoxazole and the hydrazone double bond, respectively (Burkhart et al., 1999). The naphthyloxy analog (Ia) adopts a similar E-geometry at the C=N double bond, but an s-cis conformation at the C-4 bond between the isoxazole and the hydrazone. The observation that (Ib) exhibits no significant glutamate inhibition at SystemXc- represents a negative control in the Structure Activity Relationship. This raises interesting questions as to the relationship between conformation and geometry vis-a-vis biological effect, and this will be the subject of forthcoming manuscripts.

Experimental

The title compound (Ia) was prepared from ethyl 5-methyl-4-(2,5,5-trimethyl-1,3-dioxan-2-yl)isoxazole-3-carboxylate (Zhou & Natale, 1998) via lateral metalation (Burkhart et al., 2001), and electrophilic quenching using the Davis oxaziridine (Davis et al., 1993), to the corresponding 5-methyl alcohol. This alcohol can also be prepared by bromination followed by nucleophilic substitution by water (Twamley et al., 2007). The title compound was obtained from the 5-methyl alcohol by Williamson ether synthesis, deprotection and hydrazone formation (Burkhart et al., 1999).

4-{1-[(2,4-Dinitro-phenyl)-hydrazono]-ethyl}-5-(naphthalen-2-ylmethoxymethyl)-\ isoxazole-3-carboxylic acid ethyl ester (Ia)

To a stirred solution of ethyl 5-(naphthalen-2-yl-methoxymethyl)-4-acetyl-isoxazole-3-carboxylate (0.650 g, 1.93 mmol), in 10 ml of THF, a solution of 12 ml (1.0 eq.) of reagent 2,4-DNP was added and the reaction mixture was monitored by TLC (ether/hexane as a mobile phase). During reaction the reddish precipitate formed which was separated and purified by column chromatography. The fast moving, major isomer was examined by crystallography. Yield 57% The major isomer, yellow crystals, m.p.= 105–107 °C, 1H NMR (deuteriochloroform): δ 1.45 (t, 3H, J=7.1 Hz), 2.34 (s, 3H), 4.48 (q, 2H, J=7.1 Hz), 4.77 (s, 2H), 4.83 (s, 2H), 7.42 (m, 3H), 7.56 (d, 1H, J=9.5 Hz), 7.80 (m, 4H), 8.03 (dd, 1H, J=2.4, 9.5 Hz), 9.00 (d, 1H, J=2.6 Hz), 9.99 (brs, 1H, NH). 13C NMR (500 MHz) δ 14.1, 17.3, 60.6, 62.7, 73.1, 116.0, 118.3, 123.2, 125.4, 126.3, 126.4, 127.0, 127.5, 127.6, 128.4, 129.8, 132.9, 133.0, 134.1, 138.6, 143.8, 144.2, 154.1, 159.8, 168.8. The minor isomer, 1H NMR (deuteriochloroform):δ 1.40 (t, 3H, J=7.1 Hz), 2.43 (s, 3H), 4.46 (q, 2H, J=7.1 Hz), 4.80 (s, 2H), 4.93 (s, 2H), 7.22 (d, 1H, J=9.5 Hz), 7.42 (m, 3H), 7.80 (m, 4H), 8.03 (dd, 1H, J=2.4, 9.5 Hz), 8.65 (d, 1H, J=2.6 Hz), 10.75 (brs, 1H, NH).

Refinement

All other H atoms were positioned geometrically and refined using a riding model, with Uiso constrained to be 1.2Ueq (CHarom, CH2 = 0.95–0.99 Å) and 1.5Ueq (CH3 = 0.98Å) of the carrier atom.

Figures

Fig. 1.
Molecular Structure of (Ia), showing 30% probablility displacement ellipsoids.
Fig. 2.
Structure of the title Compound (Ia), corresponding carboxylic acid (Ib), the neurotransmitter AMPA (II), and previously reported simple analog (III).

Crystal data

C26H23N5O8Z = 2
Mr = 533.49F(000) = 556
Triclinic, P1Dx = 1.476 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.0839 (6) ÅCell parameters from 6135 reflections
b = 12.176 (1) Åθ = 2.3–30.1°
c = 14.184 (2) ŵ = 0.11 mm1
α = 90.581 (1)°T = 90 K
β = 95.925 (2)°Needle, yellow
γ = 99.251 (2)°0.47 × 0.33 × 0.30 mm
V = 1200.7 (2) Å3

Data collection

Bruker SMART APEX diffractometer4357 independent reflections
Radiation source: normal-focus sealed tube4009 reflections with I > 2σ(I)
graphiteRint = 0.023
Detector resolution: 8.3 pixels mm-1θmax = 25.3°, θmin = 2.2°
ω scansh = −8→8
Absorption correction: multi-scan (SADABS; Bruker, 2007)k = −14→14
Tmin = 0.949, Tmax = 0.971l = −17→17
18560 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.0462P)2 + 0.5022P] where P = (Fo2 + 2Fc2)/3
4357 reflections(Δ/σ)max < 0.001
354 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = −0.23 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.86385 (19)0.87869 (12)0.65591 (10)0.0225 (3)
H1A0.84040.95310.64980.027*
C20.9219 (2)0.84176 (12)0.74301 (10)0.0243 (3)
H2A0.93960.89100.79670.029*
C30.95619 (18)0.73084 (12)0.75441 (10)0.0223 (3)
C41.0160 (2)0.68877 (14)0.84368 (10)0.0279 (3)
H4A1.03620.73630.89850.034*
C51.0451 (2)0.58036 (14)0.85179 (11)0.0300 (4)
H5A1.08350.55320.91210.036*
C61.01822 (19)0.50944 (13)0.77116 (11)0.0272 (3)
H6A1.03910.43460.77720.033*
C70.96224 (19)0.54760 (12)0.68412 (10)0.0230 (3)
H7A0.94570.49900.63010.028*
C80.92856 (18)0.65841 (11)0.67329 (10)0.0199 (3)
C90.86964 (18)0.69966 (11)0.58372 (9)0.0186 (3)
H9A0.85170.65170.52920.022*
C100.83807 (18)0.80712 (11)0.57424 (9)0.0187 (3)
C120.78057 (19)0.85335 (11)0.47991 (9)0.0199 (3)
H12A0.66160.88570.48270.024*
H12B0.88350.91300.46360.024*
O130.74889 (14)0.76632 (8)0.40973 (7)0.0234 (2)
C140.7541 (2)0.80387 (11)0.31558 (9)0.0210 (3)
H14A0.80400.74870.27720.025*
H14B0.84460.87490.31620.025*
C150.56224 (19)0.82104 (11)0.26945 (9)0.0183 (3)
O160.50754 (14)0.92145 (7)0.28170 (7)0.0218 (2)
N170.32990 (17)0.92234 (9)0.22939 (8)0.0214 (3)
C180.28435 (19)0.82377 (11)0.18738 (9)0.0178 (3)
C190.09928 (19)0.79318 (11)0.12615 (9)0.0183 (3)
O200.04690 (14)0.70128 (8)0.09134 (7)0.0255 (2)
O210.00088 (13)0.87728 (8)0.11528 (7)0.0221 (2)
C22−0.1807 (2)0.85128 (12)0.05412 (10)0.0248 (3)
H22A−0.26440.78760.07920.030*
H22B−0.15610.8310−0.01070.030*
C23−0.2763 (2)0.95228 (13)0.05216 (11)0.0303 (3)
H23A−0.39830.93710.01120.045*
H23B−0.19221.01480.02740.045*
H23C−0.30120.97120.11660.045*
C240.42658 (18)0.75465 (11)0.21070 (9)0.0166 (3)
C250.43276 (18)0.63811 (11)0.18367 (9)0.0163 (3)
C260.4029 (2)0.59917 (11)0.08182 (9)0.0211 (3)
H26A0.29370.53810.07270.032*
H26B0.51900.57310.06470.032*
H26C0.37630.66090.04140.032*
N270.47840 (15)0.57795 (9)0.25405 (8)0.0166 (2)
N280.49202 (15)0.47000 (9)0.23163 (8)0.0169 (2)
H28A0.46520.44440.17270.020*
C290.54745 (17)0.40296 (10)0.30165 (9)0.0159 (3)
C300.56433 (18)0.29033 (10)0.28470 (9)0.0165 (3)
C310.62357 (18)0.22374 (11)0.35731 (10)0.0179 (3)
H31A0.63350.14820.34490.022*
C320.66733 (18)0.26928 (11)0.44716 (9)0.0184 (3)
C330.65367 (18)0.37992 (11)0.46714 (9)0.0186 (3)
H33A0.68440.40960.53010.022*
C340.59579 (18)0.44555 (11)0.39560 (9)0.0180 (3)
H34A0.58800.52110.40930.022*
N350.52605 (15)0.23912 (9)0.19029 (8)0.0186 (2)
O360.56216 (15)0.14538 (8)0.17852 (7)0.0263 (2)
O370.45844 (14)0.29207 (8)0.12397 (7)0.0222 (2)
N380.73724 (16)0.20206 (10)0.52367 (8)0.0215 (3)
O390.79957 (15)0.24887 (9)0.60029 (7)0.0288 (2)
O400.73174 (15)0.10215 (8)0.50788 (8)0.0292 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0195 (7)0.0215 (7)0.0262 (7)0.0015 (5)0.0036 (6)−0.0018 (6)
C20.0201 (7)0.0306 (8)0.0208 (7)0.0002 (6)0.0033 (5)−0.0071 (6)
C30.0130 (6)0.0332 (8)0.0198 (7)−0.0001 (6)0.0033 (5)0.0021 (6)
C40.0183 (7)0.0457 (9)0.0186 (7)0.0014 (6)0.0022 (5)0.0002 (6)
C50.0185 (7)0.0494 (10)0.0221 (7)0.0044 (6)0.0019 (6)0.0141 (7)
C60.0163 (7)0.0330 (8)0.0320 (8)0.0026 (6)0.0029 (6)0.0116 (6)
C70.0156 (6)0.0273 (7)0.0248 (7)0.0000 (5)0.0016 (5)0.0037 (6)
C80.0116 (6)0.0263 (7)0.0208 (7)−0.0010 (5)0.0031 (5)0.0029 (5)
C90.0140 (6)0.0234 (7)0.0176 (7)0.0002 (5)0.0014 (5)−0.0011 (5)
C100.0130 (6)0.0222 (7)0.0202 (7)0.0005 (5)0.0025 (5)0.0010 (5)
C120.0189 (6)0.0181 (7)0.0223 (7)0.0024 (5)0.0014 (5)−0.0008 (5)
O130.0318 (5)0.0187 (5)0.0175 (5)0.0021 (4)−0.0043 (4)0.0013 (4)
C140.0244 (7)0.0205 (7)0.0175 (7)0.0031 (5)−0.0002 (5)0.0025 (5)
C150.0250 (7)0.0154 (6)0.0149 (6)0.0035 (5)0.0036 (5)0.0027 (5)
O160.0270 (5)0.0169 (5)0.0208 (5)0.0048 (4)−0.0026 (4)−0.0004 (4)
N170.0248 (6)0.0205 (6)0.0196 (6)0.0067 (5)−0.0001 (5)0.0032 (5)
C180.0223 (7)0.0170 (6)0.0150 (6)0.0048 (5)0.0041 (5)0.0037 (5)
C190.0217 (7)0.0186 (7)0.0164 (6)0.0064 (5)0.0058 (5)0.0046 (5)
O200.0271 (5)0.0202 (5)0.0287 (6)0.0057 (4)−0.0028 (4)−0.0007 (4)
O210.0218 (5)0.0216 (5)0.0240 (5)0.0083 (4)−0.0007 (4)0.0012 (4)
C220.0199 (7)0.0309 (8)0.0244 (7)0.0089 (6)−0.0012 (6)−0.0018 (6)
C230.0261 (8)0.0322 (8)0.0344 (8)0.0122 (6)−0.0006 (6)0.0043 (7)
C240.0199 (6)0.0172 (6)0.0137 (6)0.0043 (5)0.0035 (5)0.0038 (5)
C250.0141 (6)0.0173 (6)0.0180 (6)0.0035 (5)0.0018 (5)0.0013 (5)
C260.0260 (7)0.0192 (7)0.0187 (7)0.0058 (5)0.0020 (5)0.0011 (5)
N270.0159 (5)0.0141 (5)0.0204 (6)0.0037 (4)0.0018 (4)0.0004 (4)
N280.0208 (6)0.0149 (5)0.0151 (5)0.0043 (4)0.0008 (4)−0.0001 (4)
C290.0118 (6)0.0169 (6)0.0192 (6)0.0019 (5)0.0035 (5)0.0019 (5)
C300.0139 (6)0.0165 (6)0.0188 (7)0.0008 (5)0.0031 (5)0.0003 (5)
C310.0145 (6)0.0158 (6)0.0243 (7)0.0027 (5)0.0052 (5)0.0027 (5)
C320.0138 (6)0.0218 (7)0.0203 (7)0.0033 (5)0.0037 (5)0.0065 (5)
C330.0164 (6)0.0225 (7)0.0170 (7)0.0034 (5)0.0022 (5)0.0003 (5)
C340.0177 (6)0.0165 (6)0.0204 (7)0.0036 (5)0.0032 (5)−0.0004 (5)
N350.0179 (6)0.0166 (6)0.0212 (6)0.0014 (4)0.0036 (4)−0.0005 (4)
O360.0373 (6)0.0150 (5)0.0275 (5)0.0073 (4)0.0038 (4)−0.0032 (4)
O370.0275 (5)0.0214 (5)0.0176 (5)0.0058 (4)−0.0010 (4)0.0007 (4)
N380.0183 (6)0.0251 (6)0.0230 (6)0.0066 (5)0.0058 (5)0.0078 (5)
O390.0328 (6)0.0356 (6)0.0190 (5)0.0098 (5)−0.0001 (4)0.0051 (4)
O400.0360 (6)0.0203 (5)0.0333 (6)0.0095 (4)0.0040 (5)0.0093 (4)

Geometric parameters (Å, °)

C1—C21.365 (2)C19—O211.3300 (16)
C1—C101.4210 (19)O21—C221.4628 (16)
C1—H1A0.9500C22—C231.496 (2)
C2—C31.418 (2)C22—H22A0.9900
C2—H2A0.9500C22—H22B0.9900
C3—C41.420 (2)C23—H23A0.9800
C3—C81.420 (2)C23—H23B0.9800
C4—C51.373 (2)C23—H23C0.9800
C4—H4A0.9500C24—C251.4749 (18)
C5—C61.404 (2)C25—N271.2893 (17)
C5—H5A0.9500C25—C261.4991 (18)
C6—C71.366 (2)C26—H26A0.9800
C6—H6A0.9500C26—H26B0.9800
C7—C81.415 (2)C26—H26C0.9800
C7—H7A0.9500N27—N281.3700 (15)
C8—C91.4182 (19)N28—C291.3587 (17)
C9—C101.3682 (19)N28—H28A0.8800
C9—H9A0.9500C29—C341.4130 (19)
C10—C121.4998 (18)C29—C301.4160 (18)
C12—O131.4214 (16)C30—C311.3898 (18)
C12—H12A0.9900C30—N351.4524 (17)
C12—H12B0.9900C31—C321.3699 (19)
O13—C141.4181 (16)C31—H31A0.9500
C14—C151.4930 (19)C32—C331.3945 (19)
C14—H14A0.9900C32—N381.4596 (17)
C14—H14B0.9900C33—C341.3684 (18)
C15—O161.3554 (16)C33—H33A0.9500
C15—C241.3575 (19)C34—H34A0.9500
O16—N171.3950 (15)N35—O361.2227 (14)
N17—C181.3120 (17)N35—O371.2443 (14)
C18—C241.4291 (18)N38—O391.2282 (15)
C18—C191.4876 (19)N38—O401.2284 (15)
C19—O201.2047 (16)
C2—C1—C10120.75 (13)C19—O21—C22114.54 (11)
C2—C1—H1A119.6O21—C22—C23107.90 (12)
C10—C1—H1A119.6O21—C22—H22A110.1
C1—C2—C3120.89 (13)C23—C22—H22A110.1
C1—C2—H2A119.6O21—C22—H22B110.1
C3—C2—H2A119.6C23—C22—H22B110.1
C2—C3—C4122.80 (13)H22A—C22—H22B108.4
C2—C3—C8118.70 (13)C22—C23—H23A109.5
C4—C3—C8118.50 (13)C22—C23—H23B109.5
C5—C4—C3120.92 (14)H23A—C23—H23B109.5
C5—C4—H4A119.5C22—C23—H23C109.5
C3—C4—H4A119.5H23A—C23—H23C109.5
C4—C5—C6120.20 (14)H23B—C23—H23C109.5
C4—C5—H5A119.9C15—C24—C18103.34 (11)
C6—C5—H5A119.9C15—C24—C25125.47 (12)
C7—C6—C5120.32 (14)C18—C24—C25131.16 (12)
C7—C6—H6A119.8N27—C25—C24113.88 (11)
C5—C6—H6A119.8N27—C25—C26124.68 (12)
C6—C7—C8121.02 (14)C24—C25—C26121.28 (11)
C6—C7—H7A119.5C25—C26—H26A109.5
C8—C7—H7A119.5C25—C26—H26B109.5
C7—C8—C9121.98 (13)H26A—C26—H26B109.5
C7—C8—C3119.02 (13)C25—C26—H26C109.5
C9—C8—C3118.99 (13)H26A—C26—H26C109.5
C10—C9—C8121.36 (12)H26B—C26—H26C109.5
C10—C9—H9A119.3C25—N27—N28115.76 (11)
C8—C9—H9A119.3C29—N28—N27119.06 (11)
C9—C10—C1119.31 (12)C29—N28—H28A120.5
C9—C10—C12122.27 (12)N27—N28—H28A120.5
C1—C10—C12118.41 (12)N28—C29—C34120.13 (11)
O13—C12—C10109.06 (10)N28—C29—C30122.70 (12)
O13—C12—H12A109.9C34—C29—C30117.16 (12)
C10—C12—H12A109.9C31—C30—C29121.66 (12)
O13—C12—H12B109.9C31—C30—N35116.43 (11)
C10—C12—H12B109.9C29—C30—N35121.90 (11)
H12A—C12—H12B108.3C32—C31—C30118.64 (12)
C14—O13—C12114.09 (10)C32—C31—H31A120.7
O13—C14—C15113.35 (11)C30—C31—H31A120.7
O13—C14—H14A108.9C31—C32—C33121.72 (12)
C15—C14—H14A108.9C31—C32—N38119.48 (12)
O13—C14—H14B108.9C33—C32—N38118.76 (12)
C15—C14—H14B108.9C34—C33—C32119.63 (12)
H14A—C14—H14B107.7C34—C33—H33A120.2
O16—C15—C24109.91 (11)C32—C33—H33A120.2
O16—C15—C14118.15 (11)C33—C34—C29121.19 (12)
C24—C15—C14131.86 (12)C33—C34—H34A119.4
C15—O16—N17109.21 (10)C29—C34—H34A119.4
C18—N17—O16105.26 (10)O36—N35—O37122.13 (11)
N17—C18—C24112.27 (12)O36—N35—C30118.81 (11)
N17—C18—C19120.58 (12)O37—N35—C30119.06 (10)
C24—C18—C19127.11 (12)O39—N38—O40123.59 (11)
O20—C19—O21124.76 (12)O39—N38—C32118.01 (11)
O20—C19—C18122.48 (12)O40—N38—C32118.39 (11)
O21—C19—C18112.76 (11)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N28—H28A···O370.881.962.6028 (14)128

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2449).

References

  • Bruker (2007). SMART, SAINT-Plus and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Burkhart, D. J., Vij, A. & Natale, N. R. (1999). J. Chem. Crystallogr.29, 749–758.
  • Burkhart, D. J., Zhou, P., Blumenfeld, A., Twamley, B. & Natale, N. R. (2001). Tetrahedron, 57, 8039–8046.
  • Davis, F. A., Reddy, R. T., Han, W. & Reddy, R. E. (1993). Pure Appl. Chem.65, 633–640.
  • Honore, T. & Lauridsen, J. (1980). Acta Chem. Scand. B, 34, 235–240.
  • Krogsgaard-Larsen, P., Honore, T., Hansen, J. J., Curtis, D. R. & Lodge, D. (1980). Nature (London), 284, 64–66. [PubMed]
  • Natale, N. R., Magnusson, K. & Nelson, J. K. (2006). Curr. Top. Med. Chem.6, 823–846. [PubMed]
  • Patel, S. A., Natale, N. R., Esslinger, C. S., Gajewski, M., Rhoderick, J. F., O’Brien, E., Gerdes, J. & Bridges, R. J. (2006). Soc. Neurosci. Abstr. 629.17/D66.
  • Patel, S. A., Warren, B. A., Rhoderick, J. F. & Bridges, R. J. (2004). Neuropharmacology, 46, 273–284. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stables, J. P. & Kupferberg, H. J. (2008). www.ninds.nih.gov/funding/research/asp/addadd_review.pdf.
  • Twamley, B., Szabon-Watola, M., Sharma, S. & Natale, N. R. (2007). Acta Cryst. E63, o2258–o2260.
  • Westrip, S. P. (2009). publCIF. In preparation.
  • Zhou, P. & Natale, N. R. (1998). Tetrahedron Lett.39, 8249–8252.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography