PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 January 1; 65(Pt 1): o132–o133.
Published online 2008 December 17. doi:  10.1107/S1600536808042207
PMCID: PMC2968051

4,4′-Bipyridinium bis(perchlorate)–4-aminobenzoic acid–4,4′-bipyridine–water (1/4/2/2)

Abstract

In the structure of the title compound, C10H10N2 2+·2ClO4 ·4C7H7NO2·2C10H8N2·2H2O, the 4,4′-bipyridinium cation has a crystallographically imposed centre of symmetry. The cation is linked by N—H(...)N hydrogen bonds to adjacent 4,4′-bipyridine mol­ecules, which in turn inter­act via O—H(...)N hydrogen bonds with 4-amino­benzoic acid mol­ecules, forming chains running parallel to [30An external file that holds a picture, illustration, etc.
Object name is e-65-0o132-efi1.jpg]. The chains are further connected into a three-dimensional network by N—H(...)O and O—H(...)O hydrogen-bonding inter­actions involving the perchlorate anion, the water mol­ecules and the 4-amino­benzoic acid mol­ecules. In addition, π–π stacking inter­actions with centroid–centroid distances ranging from 3.663 (6) to 3.695 (6) Å are present. The O atoms of the perchlorate anion are disordered over two sets of positions, with refined site occupancies of 0.724 (9) and 0.276 (9).

Related literature

For details of the hydrogen-bonding networks formed by 4-amino­benzoic acid and 4,4-bipyridine, see: Clemente & Marzotto (2004 [triangle]); Hu et al. (2003 [triangle]); Yang et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o132-scheme1.jpg

Experimental

Crystal data

  • C10H10N2 2+·2ClO4 ·4C7H7NO2·2C10H8N2·2H2O
  • M r = 1254.04
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o132-efi2.jpg
  • a = 10.1007 (3) Å
  • b = 10.1105 (4) Å
  • c = 16.5830 (6) Å
  • α = 91.487 (2)°
  • β = 98.529 (3)°
  • γ = 118.500 (2)°
  • V = 1462.68 (10) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 0.19 mm−1
  • T = 296 (2) K
  • 0.20 × 0.18 × 0.15 mm

Data collection

  • Bruker APEXII area-detector diffractometer
  • Absorption correction: none
  • 18132 measured reflections
  • 5242 independent reflections
  • 3142 reflections with I > 2σ(I)
  • R int = 0.058

Refinement

  • R[F 2 > 2σ(F 2)] = 0.066
  • wR(F 2) = 0.198
  • S = 1.04
  • 5242 reflections
  • 455 parameters
  • 74 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.37 e Å−3
  • Δρmin = −0.41 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XP in SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808042207/rz2274sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808042207/rz2274Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge South China Normal University for supporting this work.

supplementary crystallographic information

Comment

Hydrogen-bonding interactions between ligands are specific and directional. In this sense, 4-aminobenzoic acid and 4,4-bipyridine are the excellent candidates for the construction of three-dimensional network motifs, as they form regular hydrogen bonds functioning as both hydrogen-bond donors and acceptors (Clemente & Marzotto, 2004; Hu et al., 2003; Yang et al., 2004). Recently, we obtained the title compound under hydrothermal conditions and report its crystal structure herein.

In the title compound (Fig. 1), all bond lengths and angles are unexceptional. The 4,4'-bipyridinium cation, which is located on a centre of symmetry, acts as a N—H hydrogen bond donor on both sides to unprotonated 4,4'-bipyridine molecules, which in turn act as O—H hydrogen bond acceptors from one of the two independent 4-aminobenzoic acid molecules. Two 4-aminobenzoic acid molecules, two 4,4'-bipyridine molecules and the cation are thus connected by hydrogen bonding interactions to form a linear centrosymmetric chain running parallel to the [3 0 2] direction. These chains are further connected by O—H···O and N—H···O hydrogen bonds (Table 1) via the interstitial solvate water molecules, the perchlorate anions and the other 4-aminobenzoic acid molecules, forming a three-dimensional network (Fig. 2). The crystal packing is stabilized by π-π stacking interactions involving both pyridine rings of the unprotonated 4,4'-bipyridine molecule, the N5/C25-C29 pyridine ring of the cation and the C12-C17 benzene ring of one 4-aminobenzoic acid molecule: Cg1···Cg2i = 3.695 (6) Å; Cg1···Cg3 = 3.663 (6) Å; Cg3···Cg4ii = 3.674 (7) Å [Cg1, Cg2, Cg3 and Cg4 are the centroids of the N1/C1–C5, N2/C6–C10, C12–CC17 and N5/C25–C29 rings, respectively. Symmetry codes: (i) = 1-x, 1-y, -z; (ii) = 1-x, y, z].

Experimental

4-Aminobenzoic acid (1 mmol, 0.137 g,), 4,4-bipyridine (1 mmol, 0.156 g,) and sodium perchlorate (1 mmol, 0.123 g,) were dissolved in hot water with stirring. Colourless single crystals were obtained at room temperature by slow evaporation of the solvent over a period of several days.

Refinement

The disordered perchlorate ion was refined into two sites with refined occupancies of 0.724 (9) and 0.276 (9). The Cl···O and O···O distances were restrained to be 1.44 (1) and 2.35 (1) Å, respectively. Water H atoms were located in a difference Fourier map and refined with distance restraints of O–H = 0.86 Å and H···H = 1.39 Å. The H atom bound to the N5 nitrogen atom in the cation and the carboxylic H atoms were refined with N—H and O—H distance restraints of 0.90 Å. All other H atoms were placed at calculated positions and treated as riding on the parent atoms, with C—H = 0.93\ %A, N—H = 0.86 Å, and with Uiso(H) = 1.2 Ueq(C, N).

Figures

Fig. 1.
The molecular structure showing the atomic-numbering scheme. Displacement ellipsoids drawn at the 30% probability level. Symmetry codes: (i)-x, 1-y, 1-z.
Fig. 2.
Packing diagram of the title compound viewed along the a axis. Hydrogen bonds are shown as dashed lines.

Crystal data

C10H10N22+·2ClO4·4C7H7NO2·2C10H8N2·2H2OZ = 1
Mr = 1254.04F(000) = 654
Triclinic, P1Dx = 1.424 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.1007 (3) ÅCell parameters from 2787 reflections
b = 10.1105 (4) Åθ = 2.4–21.0°
c = 16.5830 (6) ŵ = 0.19 mm1
α = 91.487 (2)°T = 296 K
β = 98.529 (3)°Block, colourless
γ = 118.500 (2)°0.20 × 0.18 × 0.15 mm
V = 1462.68 (10) Å3

Data collection

Bruker APEXII area-detector diffractometer3142 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.058
graphiteθmax = 25.2°, θmin = 2.3°
[var phi] and ω scansh = −12→11
18132 measured reflectionsk = −11→12
5242 independent reflectionsl = −18→19

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.198H atoms treated by a mixture of independent and constrained refinement
S = 1.04w = 1/[σ2(Fo2) + (0.0835P)2 + 0.5543P] where P = (Fo2 + 2Fc2)/3
5242 reflections(Δ/σ)max < 0.001
455 parametersΔρmax = 0.37 e Å3
74 restraintsΔρmin = −0.41 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
C10.4592 (5)0.5702 (4)0.2272 (2)0.0780 (12)
H10.46880.65610.25520.094*
C20.5531 (5)0.5894 (4)0.1716 (2)0.0718 (11)
H20.62350.68660.16270.086*
C30.5438 (3)0.4659 (3)0.12897 (17)0.0445 (7)
C40.4368 (4)0.3262 (4)0.1468 (2)0.0621 (9)
H40.42560.23820.12040.075*
C50.3468 (4)0.3170 (4)0.2035 (2)0.0667 (10)
H50.27580.22160.21450.080*
C60.6445 (3)0.4829 (3)0.06907 (17)0.0454 (7)
C70.7468 (4)0.6237 (4)0.0504 (2)0.0640 (10)
H70.75520.71040.07670.077*
C80.8361 (4)0.6363 (4)−0.0067 (2)0.0681 (10)
H80.90440.7329−0.01760.082*
C90.7333 (5)0.3836 (5)−0.0301 (2)0.0774 (12)
H90.72720.2990−0.05760.093*
C100.6398 (5)0.3613 (4)0.0269 (2)0.0716 (11)
H100.57310.26340.03680.086*
C111.0179 (4)0.5687 (4)0.1962 (2)0.0570 (9)
C120.9160 (4)0.5534 (4)0.25473 (18)0.0504 (8)
C130.8008 (4)0.4134 (4)0.26858 (19)0.0529 (8)
H130.78750.32580.24060.064*
C140.7066 (4)0.4019 (4)0.32255 (19)0.0556 (8)
H140.63040.30700.33070.067*
C150.7238 (4)0.5309 (4)0.3653 (2)0.0566 (9)
C160.8404 (4)0.6714 (4)0.3531 (2)0.0647 (10)
H160.85500.75880.38200.078*
C170.9340 (4)0.6819 (4)0.2984 (2)0.0601 (9)
H171.01080.77670.29040.072*
C180.8014 (5)0.0246 (4)0.0816 (2)0.0625 (9)
C190.7278 (4)0.0094 (3)0.1525 (2)0.0573 (9)
C200.8008 (4)0.0010 (4)0.2290 (2)0.0653 (10)
H200.89630.00660.23400.078*
C210.7339 (5)−0.0152 (4)0.2969 (2)0.0713 (11)
H210.7847−0.02000.34730.086*
C220.5911 (5)−0.0244 (4)0.2912 (3)0.0735 (11)
C230.5181 (5)−0.0161 (4)0.2145 (3)0.0747 (11)
H230.4226−0.02160.20940.090*
C240.5850 (4)0.0000 (4)0.1471 (2)0.0644 (10)
H240.53410.00470.09660.077*
C250.2424 (5)0.5900 (5)0.3916 (2)0.0785 (12)
H250.32510.67330.37700.094*
C260.1654 (5)0.6129 (4)0.4471 (2)0.0716 (11)
H260.19510.71070.46890.086*
C270.0433 (3)0.4902 (4)0.47059 (17)0.0466 (7)
C280.0067 (4)0.3484 (4)0.4352 (2)0.0657 (10)
H28−0.07370.26200.44910.079*
C290.0886 (4)0.3356 (5)0.3799 (2)0.0709 (11)
H290.06230.23960.35670.085*
N10.3567 (3)0.4374 (3)0.24310 (16)0.0579 (7)
N20.8310 (3)0.5191 (4)−0.04737 (17)0.0607 (8)
N30.6272 (4)0.5201 (4)0.41820 (18)0.0758 (9)
H3A0.55500.43280.42510.091*
H3B0.63890.60070.44430.091*
N40.5226 (5)−0.0444 (5)0.3583 (2)0.1091 (13)
H4A0.5680−0.05140.40490.131*
H4B0.4342−0.04990.35400.131*
N50.2031 (4)0.4537 (4)0.35815 (17)0.0598 (8)
O10.9981 (3)0.4406 (3)0.16264 (16)0.0718 (7)
O21.1150 (3)0.6913 (3)0.18048 (17)0.0787 (8)
O30.7226 (3)0.0324 (3)0.01186 (18)0.0793 (8)
O40.9250 (3)0.0302 (3)0.08352 (18)0.0848 (8)
O50.1553 (3)0.9533 (3)0.11791 (17)0.0720 (7)
H1C1.058 (4)0.451 (5)0.126 (2)0.119 (17)*
H3C0.776 (5)0.039 (6)−0.028 (2)0.122 (19)*
H5A0.128 (4)0.866 (2)0.133 (2)0.078 (13)*
H5B0.079 (3)0.970 (4)0.111 (3)0.12 (2)*
H5C0.251 (5)0.442 (6)0.319 (2)0.14 (2)*
O60.3808 (7)0.2312 (5)0.4742 (4)0.153 (3)0.724 (9)
O70.2540 (10)0.0812 (8)0.3516 (3)0.158 (3)0.724 (9)
O80.2998 (12)−0.0234 (8)0.4681 (6)0.155 (4)0.724 (9)
O90.1258 (8)0.0621 (9)0.4610 (6)0.190 (4)0.724 (9)
Cl10.26368 (13)0.08898 (12)0.43474 (8)0.0877 (4)0.724 (9)
O6'0.265 (2)0.1766 (19)0.5022 (7)0.158 (7)0.276 (9)
O7'0.3803 (16)0.1791 (19)0.3902 (11)0.175 (8)0.276 (9)
O8'0.264 (2)−0.0437 (14)0.4533 (12)0.109 (7)0.276 (9)
O9'0.1148 (13)0.0416 (13)0.3755 (9)0.115 (6)0.276 (9)
Cl1'0.26368 (13)0.08898 (12)0.43474 (8)0.0877 (4)0.276 (9)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.101 (3)0.059 (2)0.088 (3)0.041 (2)0.048 (2)0.007 (2)
C20.087 (3)0.048 (2)0.086 (3)0.029 (2)0.045 (2)0.0136 (19)
C30.0441 (17)0.0503 (19)0.0398 (16)0.0236 (15)0.0071 (13)0.0044 (13)
C40.068 (2)0.050 (2)0.067 (2)0.0218 (18)0.0303 (18)0.0017 (16)
C50.065 (2)0.057 (2)0.071 (2)0.0190 (18)0.0278 (18)0.0058 (18)
C60.0450 (17)0.0509 (19)0.0415 (16)0.0240 (15)0.0085 (13)0.0076 (14)
C70.062 (2)0.051 (2)0.070 (2)0.0167 (17)0.0244 (18)0.0000 (17)
C80.057 (2)0.062 (2)0.068 (2)0.0113 (18)0.0246 (18)0.0100 (19)
C90.099 (3)0.066 (3)0.084 (3)0.043 (2)0.051 (2)0.014 (2)
C100.088 (3)0.051 (2)0.086 (3)0.033 (2)0.050 (2)0.0181 (19)
C110.051 (2)0.067 (2)0.053 (2)0.0286 (19)0.0115 (16)0.0133 (18)
C120.0505 (19)0.058 (2)0.0458 (17)0.0287 (17)0.0082 (14)0.0096 (15)
C130.057 (2)0.055 (2)0.0496 (18)0.0293 (17)0.0115 (15)0.0056 (15)
C140.054 (2)0.059 (2)0.0524 (19)0.0248 (17)0.0139 (15)0.0097 (16)
C150.056 (2)0.074 (2)0.0492 (19)0.0380 (19)0.0113 (16)0.0105 (17)
C160.073 (2)0.063 (2)0.066 (2)0.039 (2)0.0136 (19)0.0012 (18)
C170.059 (2)0.054 (2)0.065 (2)0.0247 (17)0.0153 (17)0.0110 (17)
C180.066 (2)0.047 (2)0.077 (3)0.0274 (18)0.018 (2)0.0114 (17)
C190.056 (2)0.0402 (18)0.074 (2)0.0217 (16)0.0126 (17)0.0086 (16)
C200.062 (2)0.057 (2)0.077 (3)0.0304 (19)0.0102 (19)0.0050 (18)
C210.084 (3)0.059 (2)0.069 (2)0.034 (2)0.011 (2)0.0068 (18)
C220.082 (3)0.050 (2)0.089 (3)0.027 (2)0.034 (2)0.014 (2)
C230.061 (2)0.064 (2)0.103 (3)0.031 (2)0.023 (2)0.019 (2)
C240.061 (2)0.056 (2)0.079 (3)0.0292 (18)0.0149 (19)0.0149 (18)
C250.090 (3)0.067 (3)0.083 (3)0.032 (2)0.050 (2)0.017 (2)
C260.088 (3)0.053 (2)0.083 (3)0.033 (2)0.047 (2)0.0095 (18)
C270.0489 (18)0.0546 (19)0.0420 (16)0.0294 (16)0.0090 (13)0.0066 (14)
C280.060 (2)0.056 (2)0.078 (2)0.0229 (18)0.0246 (18)−0.0046 (18)
C290.066 (2)0.063 (2)0.077 (3)0.026 (2)0.021 (2)−0.0122 (19)
N10.0571 (17)0.067 (2)0.0516 (16)0.0300 (15)0.0159 (13)0.0041 (14)
N20.0552 (17)0.074 (2)0.0550 (17)0.0302 (16)0.0203 (13)0.0093 (15)
N30.073 (2)0.093 (2)0.072 (2)0.0439 (19)0.0284 (17)0.0050 (18)
N40.125 (3)0.118 (3)0.103 (3)0.062 (3)0.060 (3)0.037 (3)
N50.0637 (19)0.077 (2)0.0497 (16)0.0412 (18)0.0156 (14)0.0034 (15)
O10.0788 (18)0.0675 (17)0.0739 (17)0.0323 (14)0.0395 (14)0.0093 (14)
O20.0747 (17)0.0691 (17)0.0948 (19)0.0289 (15)0.0418 (15)0.0247 (15)
O30.0734 (18)0.095 (2)0.0739 (19)0.0426 (16)0.0169 (15)0.0200 (15)
O40.0781 (19)0.101 (2)0.098 (2)0.0563 (17)0.0312 (16)0.0246 (16)
O50.0724 (18)0.0648 (18)0.0782 (18)0.0317 (15)0.0163 (14)0.0169 (14)
O60.165 (5)0.067 (3)0.187 (6)0.018 (3)0.060 (4)−0.015 (3)
O70.213 (8)0.156 (5)0.086 (4)0.072 (5)0.043 (4)0.021 (3)
O80.199 (8)0.095 (5)0.177 (7)0.077 (5)0.030 (6)0.017 (4)
O90.148 (6)0.210 (7)0.237 (8)0.084 (5)0.114 (6)0.047 (6)
Cl10.0960 (9)0.0596 (7)0.1150 (10)0.0368 (6)0.0438 (7)0.0144 (6)
O6'0.195 (12)0.143 (10)0.156 (10)0.094 (9)0.056 (8)−0.036 (7)
O7'0.172 (11)0.162 (11)0.170 (12)0.048 (8)0.082 (9)0.058 (9)
O8'0.115 (9)0.063 (9)0.145 (11)0.045 (7)−0.003 (7)0.037 (7)
O9'0.095 (8)0.096 (8)0.139 (10)0.051 (6)−0.030 (7)−0.010 (6)
Cl1'0.0960 (9)0.0596 (7)0.1150 (10)0.0368 (6)0.0438 (7)0.0144 (6)

Geometric parameters (Å, °)

C1—N11.310 (5)C18—C191.456 (5)
C1—C21.371 (5)C19—C241.388 (5)
C1—H10.9300C19—C201.396 (5)
C2—C31.376 (5)C20—C211.372 (5)
C2—H20.9300C20—H200.9300
C3—C41.382 (4)C21—C221.388 (6)
C3—C61.481 (4)C21—H210.9300
C4—C51.378 (5)C22—N41.366 (5)
C4—H40.9300C22—C231.397 (6)
C5—N11.321 (4)C23—C241.365 (5)
C5—H50.9300C23—H230.9300
C6—C101.375 (5)C24—H240.9300
C6—C71.380 (4)C25—N51.318 (5)
C7—C81.371 (5)C25—C261.371 (5)
C7—H70.9300C25—H250.9300
C8—N21.323 (5)C26—C271.385 (5)
C8—H80.9300C26—H260.9300
C9—N21.322 (5)C27—C281.387 (5)
C9—C101.381 (5)C27—C27i1.472 (6)
C9—H90.9300C28—C291.365 (5)
C10—H100.9300C28—H280.9300
C11—O21.224 (4)C29—N51.312 (5)
C11—O11.308 (4)C29—H290.9300
C11—C121.475 (5)N3—H3A0.8600
C12—C171.390 (5)N3—H3B0.8600
C12—C131.391 (5)N4—H4A0.8600
C13—C141.368 (4)N4—H4B0.8600
C13—H130.9300N5—H5C0.90 (5)
C14—C151.390 (5)O1—H1C0.89 (4)
C14—H140.9300O3—H3C0.90 (5)
C15—N31.375 (4)O5—H5A0.852 (11)
C15—C161.391 (5)O5—H5B0.86 (4)
C16—C171.376 (5)O6—Cl11.412 (4)
C16—H160.9300O7—Cl11.365 (4)
C17—H170.9300O8—Cl11.448 (5)
C18—O41.218 (4)O9—Cl11.424 (5)
C18—O31.329 (4)
N1—C1—C2123.6 (3)C24—C19—C20118.0 (3)
N1—C1—H1118.2C24—C19—C18122.5 (3)
C2—C1—H1118.2C20—C19—C18119.5 (3)
C1—C2—C3120.4 (3)C21—C20—C19121.0 (4)
C1—C2—H2119.8C21—C20—H20119.5
C3—C2—H2119.8C19—C20—H20119.5
C2—C3—C4115.7 (3)C20—C21—C22120.8 (4)
C2—C3—C6121.7 (3)C20—C21—H21119.6
C4—C3—C6122.6 (3)C22—C21—H21119.6
C5—C4—C3120.2 (3)N4—C22—C21120.8 (4)
C5—C4—H4119.9N4—C22—C23121.0 (4)
C3—C4—H4119.9C21—C22—C23118.2 (4)
N1—C5—C4123.0 (3)C24—C23—C22120.9 (4)
N1—C5—H5118.5C24—C23—H23119.5
C4—C5—H5118.5C22—C23—H23119.5
C10—C6—C7115.7 (3)C23—C24—C19121.1 (4)
C10—C6—C3122.9 (3)C23—C24—H24119.4
C7—C6—C3121.4 (3)C19—C24—H24119.4
C8—C7—C6120.3 (3)N5—C25—C26122.2 (4)
C8—C7—H7119.8N5—C25—H25118.9
C6—C7—H7119.8C26—C25—H25118.9
N2—C8—C7123.9 (3)C25—C26—C27119.9 (3)
N2—C8—H8118.1C25—C26—H26120.0
C7—C8—H8118.1C27—C26—H26120.0
N2—C9—C10123.3 (3)C26—C27—C28116.4 (3)
N2—C9—H9118.4C26—C27—C27i121.7 (4)
C10—C9—H9118.4C28—C27—C27i121.9 (4)
C6—C10—C9120.5 (3)C29—C28—C27120.0 (3)
C6—C10—H10119.8C29—C28—H28120.0
C9—C10—H10119.8C27—C28—H28120.0
O2—C11—O1122.0 (3)N5—C29—C28122.5 (4)
O2—C11—C12123.2 (3)N5—C29—H29118.8
O1—C11—C12114.8 (3)C28—C29—H29118.8
C17—C12—C13117.9 (3)C1—N1—C5117.1 (3)
C17—C12—C11119.8 (3)C9—N2—C8116.4 (3)
C13—C12—C11122.3 (3)C15—N3—H3A120.0
C14—C13—C12121.3 (3)C15—N3—H3B120.0
C14—C13—H13119.3H3A—N3—H3B120.0
C12—C13—H13119.3C22—N4—H4A120.0
C13—C14—C15120.6 (3)C22—N4—H4B120.0
C13—C14—H14119.7H4A—N4—H4B120.0
C15—C14—H14119.7C29—N5—C25119.1 (3)
N3—C15—C14120.8 (3)C29—N5—H5C120 (4)
N3—C15—C16120.6 (3)C25—N5—H5C121 (4)
C14—C15—C16118.6 (3)C11—O1—H1C114 (3)
C17—C16—C15120.4 (3)C18—O3—H3C108 (3)
C17—C16—H16119.8H5A—O5—H5B110 (4)
C15—C16—H16119.8O7—Cl1—O6111.8 (4)
C16—C17—C12121.2 (3)O7—Cl1—O9114.1 (5)
C16—C17—H17119.4O6—Cl1—O9107.3 (4)
C12—C17—H17119.4O7—Cl1—O8110.9 (4)
O4—C18—O3120.9 (4)O6—Cl1—O8106.6 (5)
O4—C18—C19124.5 (4)O9—Cl1—O8105.7 (5)
O3—C18—C19114.6 (3)
N1—C1—C2—C3−0.3 (7)C13—C12—C17—C16−0.5 (5)
C1—C2—C3—C4−0.5 (6)C11—C12—C17—C16179.7 (3)
C1—C2—C3—C6−179.4 (4)O4—C18—C19—C24−178.5 (3)
C2—C3—C4—C50.6 (5)O3—C18—C19—C241.6 (5)
C6—C3—C4—C5179.5 (3)O4—C18—C19—C200.3 (5)
C3—C4—C5—N10.1 (6)O3—C18—C19—C20−179.6 (3)
C2—C3—C6—C10178.6 (3)C24—C19—C20—C21−0.3 (5)
C4—C3—C6—C10−0.3 (5)C18—C19—C20—C21−179.2 (3)
C2—C3—C6—C7−3.3 (5)C19—C20—C21—C220.3 (5)
C4—C3—C6—C7177.8 (3)C20—C21—C22—N4178.3 (4)
C10—C6—C7—C8−0.2 (5)C20—C21—C22—C23−0.3 (5)
C3—C6—C7—C8−178.4 (3)N4—C22—C23—C24−178.3 (4)
C6—C7—C8—N20.4 (6)C21—C22—C23—C240.3 (6)
C7—C6—C10—C9−0.1 (6)C22—C23—C24—C19−0.4 (6)
C3—C6—C10—C9178.1 (3)C20—C19—C24—C230.4 (5)
N2—C9—C10—C60.1 (7)C18—C19—C24—C23179.2 (3)
O2—C11—C12—C17−3.6 (5)N5—C25—C26—C271.0 (7)
O1—C11—C12—C17175.5 (3)C25—C26—C27—C280.0 (6)
O2—C11—C12—C13176.5 (3)C25—C26—C27—C27i−179.4 (4)
O1—C11—C12—C13−4.3 (5)C26—C27—C28—C29−0.5 (5)
C17—C12—C13—C140.8 (5)C27i—C27—C28—C29178.9 (4)
C11—C12—C13—C14−179.3 (3)C27—C28—C29—N50.1 (6)
C12—C13—C14—C15−0.1 (5)C2—C1—N1—C51.0 (6)
C13—C14—C15—N3178.5 (3)C4—C5—N1—C1−0.9 (6)
C13—C14—C15—C16−1.1 (5)C10—C9—N2—C80.0 (6)
N3—C15—C16—C17−178.2 (3)C7—C8—N2—C9−0.3 (6)
C14—C15—C16—C171.4 (5)C28—C29—N5—C250.9 (6)
C15—C16—C17—C12−0.6 (5)C26—C25—N5—C29−1.5 (6)

Symmetry codes: (i) −x, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1C···N2ii0.89 (4)1.78 (4)2.673 (4)174 (5)
O3—H3C···O5iii0.90 (5)1.72 (4)2.609 (4)168 (5)
O5—H5B···O4iv0.86 (4)1.93 (4)2.775 (4)171 (4)
O5—H5A···O2v0.85 (1)1.90 (1)2.739 (4)167 (3)
N5—H5C···N10.90 (5)1.78 (5)2.680 (4)175 (5)
N3—H3A···O60.862.243.079 (6)166
N3—H3A···O7'0.862.313.113 (15)156
N3—H3B···O6vi0.862.253.085 (8)166
N3—H3B···O6'vi0.862.092.917 (18)162
N4—H4A···O8vii0.862.223.028 (10)157
N4—H4A···O8'vii0.862.553.351 (19)156
N4—H4B···O80.862.573.174 (13)129
N4—H4B···O8'0.862.573.25 (2)136

Symmetry codes: (ii) −x+2, −y+1, −z; (iii) −x+1, −y+1, −z; (iv) x−1, y+1, z; (v) x−1, y, z; (vi) −x+1, −y+1, −z+1; (vii) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2274).

References

  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc, Madison, Wisconsin, USA.
  • Clemente, D. A. & Marzotto, A. (2004). Acta Cryst. B60, 287–292. [PubMed]
  • Hu, D. H., Huang, W., Gou, S. H., Fang, J. L. & Fun, H. K. (2003). Polyhedron, 22, 2661–2667.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Yang, G. P., Wang, Z. Y. & Chen, J. T. (2004). J. Mol. Struct., 707, 223–229.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography