PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 January 1; 65(Pt 1): o131.
Published online 2008 December 17. doi:  10.1107/S1600536808041962
PMCID: PMC2968050

4-Amino-3-ammonio­pyridinium dichloride

Abstract

The anions and cations of the title compound, C5H9N3 2+·2Cl, are connected by two chloride-bridged three-centered N—H(...)Cl hydrogen bonds into a three-dimensional network. The aromatic rings are not involved in stacking inter­actions.

Related literature

For bond distances and angles in pyridine, derived from microwave spectra, see: Sørensen et al. (1974 [triangle]). For details of the N—H(...)Cl hydrogen bond in 4,4′-bipyridine compounds, see: Iyere et al. (2003 [triangle]). For N—H(...)Cl and secondary inter­actions in pyridinium chlorides, see: Jones et al. (2002 [triangle]); in 4-acetyl­pyridinium chloride, see: Kochel (2005 [triangle]). For N—H(...)Cl and O—H(...)Cl contacts in a triphenyl-pyridinium chloride (1/1) adduct, see: Sykora & Cioffi (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o131-scheme1.jpg

Experimental

Crystal data

  • C5H9N3 2+·2Cl
  • M r = 182.05
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o131-efi1.jpg
  • a = 8.362 (2) Å
  • b = 7.3218 (19) Å
  • c = 13.239 (3) Å
  • β = 92.065 (4)°
  • V = 810.0 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.73 mm−1
  • T = 296 (2) K
  • 0.41 × 0.31 × 0.07 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1997 [triangle]) T min = 0.734, T max = 0.948
  • 3949 measured reflections
  • 1494 independent reflections
  • 1345 reflections with I > 2σ(I)
  • R int = 0.014

Refinement

  • R[F 2 > 2σ(F 2)] = 0.025
  • wR(F 2) = 0.068
  • S = 1.14
  • 1494 reflections
  • 92 parameters
  • H-atom parameters constrained
  • Δρmax = 0.24 e Å−3
  • Δρmin = −0.25 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808041962/si2142sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808041962/si2142Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Luo Yang Normal University for supporting this work.

supplementary crystallographic information

Comment

The title compound is a salt containing a diprotonated 3,4-diaminopyridine cation and two Cl- anions (Fig. 1). The C1—N3—C5 bond angle is wider than that in pyridine (116.94 (3)°; Sørensen et al., 1974) which indicates that the pyridine ring N atom is protonated (Table 1). Also, the 4-amino N atom is protonated. The projection of the crystal packing along the b axis is shown in Fig. 2. The Cl- anions and the 3,4-diaminopyridinium cations in the title compound are bonded by two chlorine-bridged, three-centered N—H···Cl hydrogen bonds into a three-dimensional network (Fig. 2, Table 2). Example structures of related compounds with two- and three-centered N—H···Cl hydrogen bonds are discussed by Iyere et al. (2003); Jones et al. (2002); Kochel (2005) and Sykora & Cioffi (2007).

Experimental

3,4-diaminopyridine (0.01 mmol) and HCl (0.02 mmol) in 10 ml ethanol. Suitable crystals for X-ray analysis, were grown by allowing the solution to slowly evaporate for 15 days, and were subsequently filtered off, washed with methanol and dried under air.

Refinement

H atoms were constrained to idealized positions and refined using a riding model, with C—H distances of 0.93 Å [Uiso(H) = 1.2Ueq(C)], and NH distances of 0.86 Å for NH2 [Uiso(H) = 1.2Ueq(N)] and 0.89 Å for NH3 [Uiso(H) = 1.5Ueq(N)].

Figures

Fig. 1.
A view of the asymmetric unit of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
A view of the title compound packing down the b axis.

Crystal data

C5H9N32+·2ClF(000) = 376
Mr = 182.05Dx = 1.493 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2439 reflections
a = 8.362 (2) Åθ = 3.1–28.2°
b = 7.3218 (19) ŵ = 0.73 mm1
c = 13.239 (3) ÅT = 296 K
β = 92.065 (4)°Block, colorless
V = 810.0 (4) Å30.41 × 0.31 × 0.07 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer1494 independent reflections
Radiation source: fine-focus sealed tube1345 reflections with I > 2σ(I)
graphiteRint = 0.014
[var phi] and ω scansθmax = 25.5°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 1997)h = −10→9
Tmin = 0.734, Tmax = 0.948k = −6→8
3949 measured reflectionsl = −16→15

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068H-atom parameters constrained
S = 1.14w = 1/[σ2(Fo2) + (0.0285P)2 + 0.2927P] where P = (Fo2 + 2Fc2)/3
1494 reflections(Δ/σ)max = 0.001
92 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = −0.24 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.05806 (5)0.10977 (6)0.30663 (3)0.03884 (15)
Cl20.51526 (5)0.00029 (6)0.35359 (3)0.03603 (14)
N10.26647 (16)0.68257 (19)0.30328 (10)0.0320 (3)
H1A0.32910.62810.25940.048*
H1B0.30260.79490.31600.048*
H1C0.16700.68870.27720.048*
N20.11914 (19)0.8105 (2)0.48188 (12)0.0439 (4)
H2A0.11820.87730.42840.053*
H2B0.07370.84850.53520.053*
N30.33856 (18)0.3102 (2)0.48536 (11)0.0376 (4)
H30.38610.20610.48690.045*
C10.3383 (2)0.4103 (2)0.40010 (13)0.0329 (4)
H10.38660.36490.34310.039*
C20.26762 (18)0.5778 (2)0.39701 (12)0.0271 (3)
C30.19067 (19)0.6488 (2)0.48205 (12)0.0296 (4)
C40.1921 (2)0.5357 (2)0.56891 (13)0.0366 (4)
H40.14220.57510.62670.044*
C50.2655 (2)0.3703 (2)0.56862 (14)0.0391 (4)
H50.26560.29760.62620.047*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0414 (3)0.0428 (3)0.0324 (2)0.00951 (19)0.00267 (18)−0.00166 (18)
Cl20.0410 (3)0.0298 (2)0.0379 (2)0.00388 (17)0.01080 (18)0.00231 (17)
N10.0335 (7)0.0344 (8)0.0283 (7)0.0006 (6)0.0044 (6)−0.0002 (6)
N20.0617 (10)0.0360 (8)0.0348 (8)0.0202 (8)0.0147 (7)0.0032 (7)
N30.0403 (8)0.0265 (7)0.0462 (9)0.0089 (6)0.0023 (7)0.0007 (6)
C10.0319 (9)0.0323 (9)0.0346 (9)0.0018 (7)0.0031 (7)−0.0054 (7)
C20.0260 (8)0.0283 (8)0.0270 (8)−0.0013 (6)0.0012 (6)−0.0008 (6)
C30.0309 (8)0.0274 (8)0.0306 (8)0.0029 (7)0.0017 (7)−0.0016 (7)
C40.0434 (10)0.0377 (10)0.0291 (9)0.0069 (8)0.0069 (7)0.0021 (7)
C50.0459 (10)0.0366 (10)0.0349 (10)0.0038 (8)0.0013 (8)0.0077 (8)

Geometric parameters (Å, °)

N1—C21.458 (2)N3—H30.8600
N1—H1A0.8900C1—C21.361 (2)
N1—H1B0.8900C1—H10.9300
N1—H1C0.8900C2—C31.416 (2)
N2—C31.326 (2)C3—C41.417 (2)
N2—H2A0.8600C4—C51.358 (3)
N2—H2B0.8600C4—H40.9300
N3—C11.346 (2)C5—H50.9300
N3—C51.353 (2)
C2—N1—H1A109.5C2—C1—H1119.9
C2—N1—H1B109.5C1—C2—C3121.06 (15)
H1A—N1—H1B109.5C1—C2—N1119.26 (14)
C2—N1—H1C109.5C3—C2—N1119.65 (14)
H1A—N1—H1C109.5N2—C3—C2122.95 (15)
H1B—N1—H1C109.5N2—C3—C4120.92 (15)
C3—N2—H2A120.0C2—C3—C4116.12 (15)
C3—N2—H2B120.0C5—C4—C3120.64 (16)
H2A—N2—H2B120.0C5—C4—H4119.7
C1—N3—C5121.29 (15)C3—C4—H4119.7
C1—N3—H3119.4N3—C5—C4120.64 (16)
C5—N3—H3119.4N3—C5—H5119.7
N3—C1—C2120.23 (16)C4—C5—H5119.7
N3—C1—H1119.9
C5—N3—C1—C21.9 (3)N1—C2—C3—C4177.72 (15)
N3—C1—C2—C3−1.2 (2)N2—C3—C4—C5179.99 (18)
N3—C1—C2—N1−178.99 (14)C2—C3—C4—C50.7 (3)
C1—C2—C3—N2−179.35 (16)C1—N3—C5—C4−1.2 (3)
N1—C2—C3—N2−1.6 (2)C3—C4—C5—N3−0.1 (3)
C1—C2—C3—C4−0.1 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl2i0.892.223.1142 (15)178
N1—H1B···Cl2ii0.892.373.1754 (16)151
N1—H1C···Cl1iii0.892.233.0790 (16)160
N2—H2A···Cl1ii0.862.393.2188 (17)163
N2—H2B···Cl1iv0.862.423.2672 (17)168
N3—H3···Cl20.862.593.2499 (16)135
N3—H3···Cl2v0.862.703.3198 (16)130

Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) x, y+1, z; (iii) −x, y+1/2, −z+1/2; (iv) −x, −y+1, −z+1; (v) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2142).

References

  • Iyere, P. A., Boadi, W. Y., Atwood, D. & Parkin, S. (2003). Acta Cryst. B59, 664–669. [PubMed]
  • Bruker (1997). SMART, SAINT and SADABS Bruker AXS Inc., Madison,Wisconsin, USA.
  • Jones, P. G., Vancea, F. & Herbst-Irmer, R. (2002). Acta Cryst. C58, o665–o668. [PubMed]
  • Kochel, A. (2005). Acta Cryst. E61, o926–o927.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sørensen, G. O., Mahler, L. & Rastrup-Andersen, N. (1974). J. Mol. Struct.20, 119–126.
  • Sykora, R. E. & Cioffi, E. A. (2007). Acta Cryst. E63, o3148–o3149.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography