PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 January 1; 65(Pt 1): o123.
Published online 2008 December 13. doi:  10.1107/S1600536808042025
PMCID: PMC2968043

4-Chloro-2-((1R)-1-{[(R)-(2-chlorophen­yl)(cyclo­pent­yl)meth­yl]amino}prop­yl)phenol

Abstract

In the title compound, C21H25Cl2NO, the dihedral angle between the two benzene rings is 33.18 (11)°. The five-membered ring adopts an envelope conformation. There is an intra­molecular O—H(...)N hydrogen bond. In the crystal, mol­ecules are linked by weak N—H(...)Cl hydrogen bonds, forming a helical chain along the c axis.

Related literature

For related literature on amino­phenols, see: Cimarelli et al. (2002 [triangle]); Joshi & Malhotra (2003 [triangle]); Li et al. (2004 [triangle]); Puigjaner et al. (1999 [triangle]); Watts et al. (2005 [triangle]). For the synthesis, see: Yang et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o123-scheme1.jpg

Experimental

Crystal data

  • C21H25Cl2NO
  • M r = 378.32
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o123-efi1.jpg
  • a = 10.9802 (17) Å
  • b = 11.5607 (18) Å
  • c = 15.536 (2) Å
  • V = 1972.1 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.34 mm−1
  • T = 298 (2) K
  • 0.49 × 0.45 × 0.38 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.852, T max = 0.882
  • 10332 measured reflections
  • 3647 independent reflections
  • 3266 reflections with I > 2σ(I)
  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.093
  • S = 1.03
  • 3647 reflections
  • 231 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.17 e Å−3
  • Δρmin = −0.20 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1556 Friedel pairs
  • Flack parameter: 0.06 (6)

Data collection: SMART (Bruker, 1999 [triangle]); cell refinement: SAINT (Bruker, 1999 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808042025/is2364sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808042025/is2364Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the Natural Science Foundation of Shandong Province, China (grant No. G0231) and the Foundation of the Education Ministry of China for Returned Students (grant No. G0220) for financial support. The X-ray data were collected at Shandong Normal University, China.

supplementary crystallographic information

Comment

The synthesis of enantiopure aminophenols that have different functionalities is an important subject of research because compounds of this class are widespread in natural products, show pharmacological activity and have recently found application in asymmetric synthesis as chiral bases, auxiliaries and ligands (Cimarelli et al., 2002). Chiral aminophenols which are similar to amino alcohols have attracted wide attention for the reason that they can be used in catalytic asymmetric reactions (Puigjaner et al., 1999; Li et al., 2004; Watts et al., 2005), which is one of the most active areas of research in organic chemistry (Joshi & Malhotra, 2003). The synthesis of new aminoalkylphenols is therefore of interest because of potential as asymmetric catalysts.

As part of our continuing studies of chiral aminophenols, we now report the crystal structure of the title compound, (I), which was intially prepared to test its asymmetric catalytic activity. These compounds were prepared by conventional condensation of (R)-1-(2-chlorophenyl)-1-cyclopentylmethanamine with 1-(5-chloro-2-hydroxyphenyl)ethanone, followed by reduction using sodium borohydride in a tetrahydrofuran-ethanol (1:1 v/v) mixture. An X-ray study of the title compound, (I), was carried out and the results are presented here. The molecular structure of (I) is shown in Fig. 1.

The molecule has two chiral centres (C7/C10), which have configuration R, R, as shown in Fig. 1. In the molecules of (I), the five-membered rings adopts an envelope conformation. The dihedral angle between the benzene rings is 33.18 (11)°. There is an intramolecular O1—H1A···N1 hydrogen bond (Table 1). Phenol atom O1 acts as a hydrogen bond donor to atom N1, with O1···N1 = 2.647 (2) Å, which indicates a comparatively strong intramolecular hydrogen bond (Table 1); this distance is significantly shorter than the sum (3.07 Å) of the van der Waals radii for N and O atoms. The molecules are linked via N1—H1···Cl2 hydrogen bonds. An interesting feature of the structure is that the N1—H1···Cl2 hydrogen-bond gives rise to a spiral chain of molecules along the c direction. There are no π-π stacking interactions are present in the structure of (I).

Experimental

The title compound were prepared according to the procedure of Yang et al. (2005). (R)-1-(2-chlorophenyl)-1-cyclopentylmethanamine (0.9 mmol) and 1-(5-chloro-2-hydroxyphenyl)propan-1-one (0.9 mmol) were dissolved in methanol (10 ml) and reacted at room temperature for 48 h. After removal of the solvent, NaBH4 (4.5 mmol) was added to the solution in THF/ethanol (1:1 v/v, 20 ml) and stirred at 273 K until the solution became colourless. The solvent was then removed under reduced pressure. Water (10 ml) was added to the residue and 1 N HCl was added dropwise until hydrogen production ceased. The mixture was neutralized with aqueous Na2CO3, then extracted with CHCl3, and the organic layer was dried over anhydrous sodium sulfate. The solvent was removed under reduced pressure. Further purification was carried out by thin-layer silica-gel chromatography (chloroform) to give a colourless solid (yield 80.5%). Crystals of (I) were grown from a n-hexane solution.

Refinement

The N-bound H atom was located in a Fourier difference map and was refined with a distance restraint of N—H = 0.86 (1) Å, and with Uiso(H) = 1.2Ueq(N). The O-bound and C-bound H atoms were positioned geometrically (O—H = 0.82 Å and C—H = 0.93–0.98 Å) and were treated as riding, with Uiso(H) = 1.2Ueq (C) or 1.5Ueq(O, methyl C).

Figures

Fig. 1.
The asymmetric unit of (I), showing the atom-labelling schemes. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as spheres of arbitrary radii.
Fig. 2.
A packing diagram of (I), view down the b axis, showing the formation of helical chains through O1—H1A···N1 and N1—H1···Cl2 hydrogen bonds (dashed lines). H atoms not involved in hydrogen ...

Crystal data

C21H25Cl2NOF(000) = 800
Mr = 378.32Dx = 1.274 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4568 reflections
a = 10.9802 (17) Åθ = 2.2–25.5°
b = 11.5607 (18) ŵ = 0.34 mm1
c = 15.536 (2) ÅT = 298 K
V = 1972.1 (5) Å3Block, colourless
Z = 40.49 × 0.45 × 0.38 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer3647 independent reflections
Radiation source: fine-focus sealed tube3266 reflections with I > 2σ(I)
graphiteRint = 0.025
[var phi] and ω scansθmax = 25.5°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −12→13
Tmin = 0.852, Tmax = 0.882k = −13→13
10332 measured reflectionsl = −18→15

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.093w = 1/[σ2(Fo2) + (0.0504P)2 + 0.2043P] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3647 reflectionsΔρmax = 0.17 e Å3
231 parametersΔρmin = −0.20 e Å3
1 restraintAbsolute structure: Flack (1983), 1556 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.06 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.4025 (2)0.9204 (2)0.46157 (14)0.0567 (6)
C20.3358 (3)0.8241 (2)0.43935 (15)0.0695 (7)
H20.35130.78530.38810.083*
C30.2468 (3)0.7864 (2)0.49342 (16)0.0687 (7)
H30.20130.72160.47860.082*
C40.2227 (2)0.84331 (19)0.57058 (15)0.0576 (6)
C50.29329 (17)0.93830 (17)0.59471 (12)0.0442 (5)
C60.38307 (18)0.97536 (19)0.53893 (13)0.0476 (5)
H60.43121.03840.55390.057*
C70.26917 (18)1.00349 (17)0.67807 (13)0.0453 (5)
H70.34371.04390.69550.054*
C80.1659 (2)1.0917 (2)0.66944 (15)0.0621 (6)
H8A0.09171.05090.65420.075*
H8B0.15281.12790.72500.075*
C90.1884 (3)1.1847 (2)0.60364 (17)0.0757 (7)
H9A0.26331.22380.61670.113*
H9B0.12251.23930.60480.113*
H9C0.19371.15060.54750.113*
C100.33131 (17)0.84631 (17)0.77983 (12)0.0420 (4)
H100.35890.79690.73240.050*
C110.27940 (18)0.76780 (18)0.84923 (13)0.0479 (5)
H110.25310.81620.89760.057*
C120.1718 (2)0.6922 (2)0.82169 (16)0.0626 (6)
H12A0.09680.73660.82080.075*
H12B0.18550.65940.76500.075*
C130.1665 (3)0.5979 (3)0.8899 (2)0.0886 (9)
H13A0.11180.62010.93600.106*
H13B0.13760.52610.86490.106*
C140.2942 (2)0.5833 (2)0.92374 (19)0.0737 (7)
H14A0.32610.50800.90810.088*
H14B0.29510.59010.98600.088*
C150.3705 (2)0.67875 (19)0.88315 (15)0.0563 (5)
H15A0.41970.64820.83650.068*
H15B0.42400.71350.92560.068*
C160.44189 (17)0.91271 (16)0.81295 (12)0.0405 (4)
C170.55907 (18)0.89656 (17)0.78285 (13)0.0466 (5)
C180.6565 (2)0.9581 (2)0.81494 (16)0.0596 (6)
H180.73420.94510.79320.071*
C190.6393 (2)1.0384 (2)0.87866 (16)0.0639 (6)
H190.70481.08060.89990.077*
C200.5237 (2)1.0559 (2)0.91091 (15)0.0608 (6)
H200.51121.10940.95470.073*
C210.4275 (2)0.99458 (18)0.87846 (14)0.0522 (5)
H210.35011.00780.90070.063*
Cl10.58898 (6)0.79389 (6)0.70334 (4)0.0724 (2)
Cl20.51106 (6)0.97523 (8)0.39044 (4)0.0820 (2)
N10.23430 (14)0.92140 (16)0.74620 (11)0.0469 (4)
H10.1982 (19)0.9534 (18)0.7882 (11)0.056*
O10.13051 (17)0.80387 (17)0.62012 (11)0.0773 (5)
H1A0.13230.83640.66700.116*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0571 (12)0.0642 (14)0.0489 (12)0.0175 (12)−0.0106 (10)0.0005 (10)
C20.100 (2)0.0584 (14)0.0502 (13)0.0194 (14)−0.0232 (14)−0.0075 (11)
C30.102 (2)0.0470 (12)0.0576 (14)−0.0064 (13)−0.0373 (14)0.0001 (12)
C40.0675 (14)0.0481 (11)0.0570 (13)−0.0112 (11)−0.0277 (11)0.0128 (10)
C50.0439 (10)0.0445 (11)0.0442 (10)0.0005 (9)−0.0147 (8)0.0040 (8)
C60.0458 (11)0.0477 (11)0.0491 (11)0.0033 (9)−0.0125 (9)−0.0017 (9)
C70.0441 (11)0.0458 (11)0.0459 (10)−0.0009 (8)−0.0084 (8)0.0015 (9)
C80.0641 (14)0.0609 (13)0.0614 (13)0.0163 (12)0.0008 (11)0.0083 (11)
C90.100 (2)0.0566 (14)0.0705 (15)0.0221 (15)0.0023 (15)0.0104 (12)
C100.0412 (10)0.0434 (10)0.0414 (10)0.0026 (8)−0.0012 (8)−0.0017 (8)
C110.0450 (11)0.0529 (12)0.0457 (11)0.0025 (10)−0.0024 (8)0.0038 (9)
C120.0482 (12)0.0691 (14)0.0706 (15)−0.0085 (11)−0.0056 (10)0.0153 (13)
C130.0688 (16)0.090 (2)0.107 (2)−0.0184 (15)−0.0105 (16)0.0458 (18)
C140.0747 (16)0.0628 (14)0.0837 (17)−0.0079 (14)−0.0110 (13)0.0242 (14)
C150.0546 (12)0.0533 (12)0.0610 (13)0.0016 (10)−0.0084 (10)0.0108 (10)
C160.0437 (10)0.0379 (9)0.0401 (10)0.0049 (8)−0.0029 (8)0.0018 (8)
C170.0470 (11)0.0439 (10)0.0488 (11)0.0027 (9)−0.0002 (9)0.0001 (9)
C180.0447 (11)0.0578 (13)0.0763 (15)0.0009 (10)−0.0047 (11)0.0011 (12)
C190.0616 (14)0.0532 (13)0.0768 (16)−0.0082 (11)−0.0235 (12)−0.0001 (12)
C200.0738 (16)0.0472 (12)0.0615 (13)0.0045 (12)−0.0138 (12)−0.0097 (11)
C210.0520 (12)0.0485 (12)0.0562 (12)0.0073 (10)−0.0037 (10)−0.0068 (9)
Cl10.0588 (3)0.0828 (4)0.0757 (4)0.0041 (3)0.0154 (3)−0.0274 (3)
Cl20.0672 (4)0.1215 (6)0.0573 (3)0.0189 (4)0.0075 (3)−0.0007 (4)
N10.0392 (9)0.0552 (10)0.0463 (9)0.0065 (8)−0.0023 (7)0.0070 (8)
O10.0815 (12)0.0804 (12)0.0701 (11)−0.0394 (10)−0.0257 (10)0.0165 (10)

Geometric parameters (Å, °)

C1—C61.376 (3)C11—C121.531 (3)
C1—C21.377 (4)C11—H110.9800
C1—Cl21.745 (3)C12—C131.521 (3)
C2—C31.360 (4)C12—H12A0.9700
C2—H20.9300C12—H12B0.9700
C3—C41.393 (4)C13—C141.507 (4)
C3—H30.9300C13—H13A0.9700
C4—O11.351 (3)C13—H13B0.9700
C4—C51.395 (3)C14—C151.522 (3)
C5—C61.381 (3)C14—H14A0.9700
C5—C71.522 (3)C14—H14B0.9700
C6—H60.9300C15—H15A0.9700
C7—N11.472 (3)C15—H15B0.9700
C7—C81.531 (3)C16—C171.382 (3)
C7—H70.9800C16—C211.399 (3)
C8—C91.504 (3)C17—C181.378 (3)
C8—H8A0.9700C17—Cl11.744 (2)
C8—H8B0.9700C18—C191.370 (3)
C9—H9A0.9600C18—H180.9300
C9—H9B0.9600C19—C201.379 (3)
C9—H9C0.9600C19—H190.9300
C10—N11.470 (2)C20—C211.369 (3)
C10—C111.520 (3)C20—H200.9300
C10—C161.526 (3)C21—H210.9300
C10—H100.9800N1—H10.848 (19)
C11—C151.529 (3)O1—H1A0.8200
C6—C1—C2120.7 (2)C12—C11—H11108.2
C6—C1—Cl2119.43 (19)C13—C12—C11104.11 (19)
C2—C1—Cl2119.89 (19)C13—C12—H12A110.9
C3—C2—C1119.1 (2)C11—C12—H12A110.9
C3—C2—H2120.5C13—C12—H12B110.9
C1—C2—H2120.5C11—C12—H12B110.9
C2—C3—C4121.1 (2)H12A—C12—H12B109.0
C2—C3—H3119.4C14—C13—C12106.7 (2)
C4—C3—H3119.4C14—C13—H13A110.4
O1—C4—C3118.2 (2)C12—C13—H13A110.4
O1—C4—C5121.9 (2)C14—C13—H13B110.4
C3—C4—C5119.8 (2)C12—C13—H13B110.4
C6—C5—C4118.2 (2)H13A—C13—H13B108.6
C6—C5—C7120.31 (17)C13—C14—C15106.6 (2)
C4—C5—C7121.45 (19)C13—C14—H14A110.4
C1—C6—C5121.0 (2)C15—C14—H14A110.4
C1—C6—H6119.5C13—C14—H14B110.4
C5—C6—H6119.5C15—C14—H14B110.4
N1—C7—C5109.75 (16)H14A—C14—H14B108.6
N1—C7—C8107.43 (17)C14—C15—C11105.70 (18)
C5—C7—C8112.60 (16)C14—C15—H15A110.6
N1—C7—H7109.0C11—C15—H15A110.6
C5—C7—H7109.0C14—C15—H15B110.6
C8—C7—H7109.0C11—C15—H15B110.6
C9—C8—C7114.5 (2)H15A—C15—H15B108.7
C9—C8—H8A108.6C17—C16—C21116.28 (18)
C7—C8—H8A108.6C17—C16—C10123.98 (17)
C9—C8—H8B108.6C21—C16—C10119.74 (17)
C7—C8—H8B108.6C18—C17—C16122.04 (19)
H8A—C8—H8B107.6C18—C17—Cl1117.49 (16)
C8—C9—H9A109.5C16—C17—Cl1120.46 (15)
C8—C9—H9B109.5C19—C18—C17120.3 (2)
H9A—C9—H9B109.5C19—C18—H18119.9
C8—C9—H9C109.5C17—C18—H18119.9
H9A—C9—H9C109.5C18—C19—C20119.2 (2)
H9B—C9—H9C109.5C18—C19—H19120.4
N1—C10—C11109.45 (15)C20—C19—H19120.4
N1—C10—C16113.53 (16)C21—C20—C19120.0 (2)
C11—C10—C16111.07 (15)C21—C20—H20120.0
N1—C10—H10107.5C19—C20—H20120.0
C11—C10—H10107.5C20—C21—C16122.1 (2)
C16—C10—H10107.5C20—C21—H21119.0
C10—C11—C15113.65 (17)C16—C21—H21119.0
C10—C11—C12115.59 (17)C10—N1—C7116.59 (15)
C15—C11—C12102.53 (18)C10—N1—H1108.9 (16)
C10—C11—H11108.2C7—N1—H1113.1 (16)
C15—C11—H11108.2C4—O1—H1A109.5
C6—C1—C2—C32.6 (3)C11—C12—C13—C14−27.7 (3)
Cl2—C1—C2—C3−176.33 (18)C12—C13—C14—C156.6 (3)
C1—C2—C3—C4−0.2 (3)C13—C14—C15—C1117.1 (3)
C2—C3—C4—O1177.9 (2)C10—C11—C15—C14−159.2 (2)
C2—C3—C4—C5−2.2 (3)C12—C11—C15—C14−33.7 (2)
O1—C4—C5—C6−177.83 (19)N1—C10—C16—C17−122.7 (2)
C3—C4—C5—C62.2 (3)C11—C10—C16—C17113.4 (2)
O1—C4—C5—C7−0.6 (3)N1—C10—C16—C2158.1 (2)
C3—C4—C5—C7179.43 (19)C11—C10—C16—C21−65.8 (2)
C2—C1—C6—C5−2.6 (3)C21—C16—C17—C18−0.5 (3)
Cl2—C1—C6—C5176.38 (15)C10—C16—C17—C18−179.69 (18)
C4—C5—C6—C10.1 (3)C21—C16—C17—Cl1178.20 (14)
C7—C5—C6—C1−177.13 (18)C10—C16—C17—Cl1−1.0 (3)
C6—C5—C7—N1−145.10 (17)C16—C17—C18—C190.0 (3)
C4—C5—C7—N137.7 (2)Cl1—C17—C18—C19−178.73 (18)
C6—C5—C7—C895.3 (2)C17—C18—C19—C200.7 (4)
C4—C5—C7—C8−81.9 (2)C18—C19—C20—C21−0.9 (4)
N1—C7—C8—C9178.4 (2)C19—C20—C21—C160.4 (3)
C5—C7—C8—C9−60.7 (3)C17—C16—C21—C200.3 (3)
N1—C10—C11—C15175.01 (17)C10—C16—C21—C20179.5 (2)
C16—C10—C11—C15−58.8 (2)C11—C10—N1—C7179.95 (17)
N1—C10—C11—C1256.8 (2)C16—C10—N1—C755.2 (2)
C16—C10—C11—C12−177.03 (17)C5—C7—N1—C1071.5 (2)
C10—C11—C12—C13161.7 (2)C8—C7—N1—C10−165.80 (17)
C15—C11—C12—C1337.5 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···Cl2i0.85 (2)2.91 (1)3.7023 (18)156 (2)
O1—H1A···N10.821.932.642 (2)144

Symmetry codes: (i) −x+1/2, −y+2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2364).

References

  • Bruker (1999). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cimarelli, C., Palmieri, G. & &Volpini, E. (2002). Tetrahedron Asymmetry, 13, 2011–2018.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Joshi, S. N. & Malhotra, S. V. (2003). Tetrahedron Asymmetry, 14, 1763–1766.
  • Li, Y., He, B., Qin, B., Feng, X. & Zhang, G. (2004). J. Org. Chem.69, 7910–7913. [PubMed]
  • Puigjaner, C., Vidal-Ferran, A., Moyano, A., Pericas, M. A., Rieras, M. A. & Riera, A. (1999). J. Org. Chem.64, 7902–7911.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Watts, C. C., Thoniyot, P., Hirayama, L. C., Romano, T. & Singaram, B. (2005). Tetrahedron Asymmetry, 16, 1829–1835.
  • Yang, X.-F., Zhang, G.-Y., Zhang, Y., Zhao, J.-Y. & Wang, X.-B. (2005). Acta Cryst. C61, o262–o264. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography