PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 January 1; 65(Pt 1): o111–o112.
Published online 2008 December 13. doi:  10.1107/S1600536808041743
PMCID: PMC2968034

N,N-Dimethyl­anilinium 2,4,6-trinitro­phenolate

Abstract

In the title compound, C8H12N+·C6H2N3O7 , there are N—H(...)O and C—H(...)O inter­actions which generate R 2 1(5), R 2 1(6) and R 1 2(6) ring motifs. The supra­molecular aggregation is completed by the presence of edge-to-face and offset face-to-face π–π inter­actions with centroid–centroid distances of 3.673 and 3.697 Å, respectively.

Related literature

For a detailed account of the design of organic polar crystals, see: Pecaut & Bagieu-Beucher (1993 [triangle]). For hydrogen bonding in nitro­phenol complexes, see: In et al. (1997 [triangle]); Zadrenko et al. (1997 [triangle]); Mizutani et al. (1998 [triangle]). For the supra­molecular architecture of mol­ecular complexes of trinitro­phenols, see: Botoshansky et al. (1994 [triangle]); Vembu et al. (2003 [triangle]). For details of the monoclinic polymorph of the title compound, see: Takayanagi et al. (1996 [triangle]). For hydrogen-bonding criteria, see: Desiraju & Steiner (1999 [triangle]); Desiraju (1989 [triangle]); Jeffrey (1997 [triangle]). For graph-set notation, see: Bernstein et al. (1995 [triangle]); Etter (1990 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o111-scheme1.jpg

Experimental

Crystal data

  • C8H12N+·C6H2N3O7
  • M r = 350.29
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o111-efi1.jpg
  • a = 15.9960 (10) Å
  • b = 9.1491 (6) Å
  • c = 10.3899 (9) Å
  • V = 1520.55 (19) Å3
  • Z = 4
  • Cu Kα radiation
  • μ = 1.08 mm−1
  • T = 90.0 (5) K
  • 0.26 × 0.24 × 0.08 mm

Data collection

  • Bruker Kappa APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.767, T max = 0.919
  • 16980 measured reflections
  • 2823 independent reflections
  • 2755 reflections with I > 2σ(I)
  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.023
  • wR(F 2) = 0.060
  • S = 1.03
  • 2823 reflections
  • 283 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.14 e Å−3
  • Δρmin = −0.16 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1309 Friedel pairs
  • Flack parameter: 0.07 (12)

Data collection: APEX2 (Bruker, 2006 [triangle]); cell refinement: APEX2 and SAINT (Bruker, 2006 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808041743/sj2565sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808041743/sj2565Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

NV thanks the University Grants Commission (UGC), Government of India, for a minor research project grant [MRP-2219/06(UGC-SERO)].

supplementary crystallographic information

Comment

The design of organic polar crystals for quadratic non-linear optical applications is supported by the observation that the organic molecules containing π-electron systems asymmetrized by electron donor and acceptor groups are highly polarizable entities in which problems of transparency and crystal growth may arise from their molecular crystal packing (Pecaut & Bagieu-Beucher, 1993). It is known that nitrophenols act not only as π-acceptors to form various π-stacking complexes with other aromatic molecules, but also as acidic ligands to form salts through specific electrostatic or H-bonding interactions (In et al., 1997). The bonding of electron-donor acceptor complexes strongly depends on the nature of the partners. The linkage could involve not only electrostatic interactions, but also the formation of molecular complexes (Zadrenko et al., 1997). It has been reported that proton transferred thermochromic complexes were formed between phenols and amines in apolar solvents at low temperature if an appropriate H-bonding network between the phenols and amines was present to stabilize it (Mizutani et al., 1998). Pyridinium picrate has been reported in two crystalline phases and it appears in both phases as an internally linked H-bonded ion pair. These two phases are referred to as molecular crystals rather than salts based on their structural arrangements (Botoshansky et al., 1994). A similar structural arrangement has also been reported for 4-dimethylaminopyridinium picrate (Vembu et al., 2003). The monoclinic polymorph of the title compound (CSD Reference Code: REYDEE) has been reported previously (Takayanagi et al., 1996). We have structurally elucidated the orthorhombic polymorph of the title compound as a forerunner to assessing its optical properties and report its structure here.

The asymmetric unit of (I) contains one N,N-Dimethylanilinium cation, and one 2,4,6-trinitrophenolate anion. (Fig.1). The crystal structure of (I) is stabilized by N—H···O and C—H···O interactions. The range of H···O distances (Table 1) found in (I) agrees with those found for N—H···O (Jeffrey, 1997) and C—H···O hydrogen bonds (Desiraju & Steiner, 1999). The N7—H7···O16 and N7—H7···O19 interactions form a pair of bifurcated donor bonds that link the N,N-dimethylanilinium cation and 2,4,6-trinitrophenolate anion and also form a motif of graph set R21(6) (Bernstein et al., 1995; Etter, 1990). Another pair of bifurcated donor bonds consists of the C2—H2···O16 and C2—H2···O24 interactions that also link the cation and the anion and form a R21(6) motif. The C8—H8A···O19 and C9—H9C···O19 interactions constitute a pair of bifurcated bonds forming a R12(6) motif that link the cation and the anion. The N7—H7···O19 and C8—H8A···O19 interactions constitute a pair of bifurcated acceptor bonds that form a R12(5) motif. The above two motifs, R12(6) and R12(5), together form a R12(5) motif by the interplay of the trifurcated acceptor bonds formed by N7—H7···O19, C9—H8A···O19 and C9—H9C···O19 interactions. There are five intermolecular C—H···O interactions (Table 1) that contribute to the supramolecular aggregation of the title compound. The intramolecular N—H···O interactions mentioned above also contribute to the formation of cooperative H-bonded network (Fig. 2). There is an offset π···π stacking interaction, Cg1···Cg2 (x, -1+y, z) at 3.697Å with α = 3.19, β = 24.88 and γ = 24.00 and the two perpendicular distances being 3.377 and 3.354Å. There is also an edge to face π···π stacking interaction, Cg1···Cg2 (1.5-x, -0.5+y, 0.5+z) at 3.673Å with α=13.75, β=25.68 and γ=12.78 and the two perpendicular distances being 3.582 and 3.310Å. Cg1 and Cg2 are the centroids of the C1···C6 and C10···.C15 rings.

The interplay of strong N—H···O and weak C—H···O, π···π interactions with different strengths, directional preferences and distance presents a complex mosaic of interactions. The three dimensional arrangement of the 2,4,6-trinitrophenolate and N,N-dimethylanilinium moieties in the unit cell, shows that the title compound is an internally linked hydrogen bonded ion pair and hence can be regarded as a molecular crystal rather than a salt.

Experimental

2,4,6-Trinitrophenol (5.2 mmol) dissolved in aqueous ethanol (25 ml) was added dropwise to N,N-dimethylaniline (5.7 mmol) in aqueous ethanol (25 ml). The above solution was constantly stirred at room temperature for 2 hrs. The precipitated product was filtered and recrystallized from aqueous ethanol. Yield 75% (3.9 mmol).

Refinement

All H-atoms were located in difference maps and their positions and isotropic displacement parameters freely refined. The 1309 Friedel pairs (96.2% coverage) were not merged, and the absolute structure was determined by refinement of the Flack (1983) parameter.

Figures

Fig. 1.
The asymmetric unit of (I) with the atoms labelled and displacement ellipsoids depicted at the 50% probability level for all non-H atoms. H-atoms are drawn as spheres of arbitrary radius.
Fig. 2.
The molecular packing viewed down the b-axis. Dashed lines represent the N—H···O and C—H···O interactions within the lattice.

Crystal data

C8H12N+·C6H2N3O7Dx = 1.530 Mg m3
Mr = 350.29Melting point: 401 K
Orthorhombic, Pna21Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2c -2nCell parameters from 9564 reflections
a = 15.996 (1) Åθ = 5.5–70.2°
b = 9.1491 (6) ŵ = 1.08 mm1
c = 10.3899 (9) ÅT = 90 K
V = 1520.55 (19) Å3Plate, yellow
Z = 40.26 × 0.24 × 0.08 mm
F(000) = 728

Data collection

Bruker Kappa APEXII CCD area-detector diffractometer2823 independent reflections
Radiation source: fine-focus sealed tube2755 reflections with I > 2σ(I)
graphiteRint = 0.033
[var phi] and ω scansθmax = 70.2°, θmin = 5.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −19→19
Tmin = 0.767, Tmax = 0.919k = −10→10
16980 measured reflectionsl = −12→12

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.023H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.060w = 1/[σ2(Fo2) + (0.0386P)2 + 0.2146P] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2823 reflectionsΔρmax = 0.14 e Å3
283 parametersΔρmin = −0.16 e Å3
1 restraintAbsolute structure: Flack (1983), 1309 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.07 (12)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.37023 (8)1.31731 (14)0.30638 (13)0.0151 (3)
C20.28455 (9)1.29778 (15)0.30264 (13)0.0165 (3)
C30.23581 (8)1.40616 (15)0.24585 (13)0.0178 (3)
C40.27257 (10)1.53064 (15)0.19438 (13)0.0195 (3)
C50.35871 (9)1.54844 (15)0.20120 (14)0.0200 (3)
C60.40878 (9)1.44179 (15)0.25752 (13)0.0180 (3)
N70.42143 (7)1.20264 (12)0.37028 (12)0.0150 (2)
C80.49639 (9)1.15827 (16)0.29319 (15)0.0212 (3)
C90.44558 (8)1.25020 (15)0.50295 (14)0.0200 (3)
C100.28722 (8)0.85997 (14)0.41862 (13)0.0141 (3)
C110.34012 (7)0.75029 (14)0.47878 (12)0.0142 (2)
C120.31105 (8)0.62014 (14)0.52863 (12)0.0141 (3)
C130.22695 (8)0.58924 (13)0.52313 (13)0.0149 (3)
C140.17059 (8)0.68496 (14)0.46412 (12)0.0146 (3)
C150.20036 (8)0.81337 (13)0.41512 (13)0.0145 (3)
O160.31146 (5)0.97691 (10)0.36915 (10)0.0183 (2)
N170.42940 (7)0.77360 (12)0.48867 (11)0.0160 (2)
O180.47489 (6)0.66722 (10)0.50973 (10)0.0207 (2)
O190.45735 (6)0.89878 (10)0.47807 (11)0.0247 (2)
N200.19719 (7)0.45202 (12)0.57365 (11)0.0167 (2)
O210.24919 (6)0.36384 (10)0.61486 (10)0.0194 (2)
O220.12141 (6)0.42767 (12)0.57227 (11)0.0267 (2)
N230.13932 (7)0.90790 (12)0.35088 (11)0.0162 (2)
O240.14260 (6)1.04028 (10)0.36928 (12)0.0240 (2)
O250.08701 (6)0.84815 (11)0.28202 (9)0.0207 (2)
H20.2611 (10)1.2148 (19)0.3398 (17)0.017 (4)*
H30.1778 (12)1.3963 (19)0.2403 (18)0.023 (4)*
H40.2380 (11)1.600 (2)0.1572 (16)0.016 (4)*
H50.3856 (11)1.633 (2)0.1698 (17)0.023 (4)*
H60.4678 (11)1.4531 (17)0.2608 (17)0.017 (4)*
H70.3883 (10)1.1243 (18)0.3740 (17)0.018 (4)*
H8A0.5236 (11)1.0734 (18)0.3373 (18)0.025 (4)*
H8B0.5363 (12)1.2445 (19)0.2860 (19)0.028 (5)*
H8C0.4773 (12)1.125 (2)0.208 (2)0.036 (5)*
H9A0.4780 (10)1.3372 (18)0.4959 (17)0.017 (4)*
H9B0.3966 (11)1.2756 (18)0.5538 (18)0.022 (4)*
H9C0.4760 (11)1.1692 (19)0.5467 (17)0.020 (4)*
H120.3479 (11)0.5528 (18)0.5656 (17)0.017 (4)*
H140.1134 (11)0.6615 (17)0.4590 (17)0.017 (4)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0177 (6)0.0136 (6)0.0140 (6)0.0022 (5)−0.0007 (5)−0.0020 (5)
C20.0197 (6)0.0135 (6)0.0161 (6)−0.0011 (5)0.0012 (5)−0.0010 (5)
C30.0172 (6)0.0170 (6)0.0193 (7)0.0013 (5)−0.0022 (5)−0.0039 (5)
C40.0281 (7)0.0146 (6)0.0158 (6)0.0041 (6)−0.0028 (5)−0.0002 (5)
C50.0286 (7)0.0137 (7)0.0175 (7)−0.0029 (5)0.0024 (6)−0.0003 (5)
C60.0198 (7)0.0166 (7)0.0175 (7)−0.0021 (5)0.0024 (5)−0.0017 (5)
N70.0142 (5)0.0132 (5)0.0174 (5)−0.0006 (4)0.0011 (4)−0.0003 (5)
C80.0193 (6)0.0192 (7)0.0251 (7)0.0028 (5)0.0058 (6)0.0008 (6)
C90.0214 (6)0.0200 (7)0.0187 (7)0.0008 (6)−0.0046 (6)−0.0016 (6)
C100.0146 (6)0.0140 (6)0.0137 (6)−0.0002 (5)−0.0013 (5)−0.0026 (5)
C110.0132 (6)0.0156 (6)0.0138 (6)0.0004 (5)0.0006 (5)−0.0023 (5)
C120.0161 (6)0.0136 (6)0.0127 (6)0.0030 (5)−0.0003 (5)−0.0009 (5)
C130.0170 (6)0.0120 (6)0.0155 (6)0.0002 (5)0.0001 (5)0.0005 (5)
C140.0123 (6)0.0162 (6)0.0152 (6)0.0002 (5)0.0008 (5)−0.0023 (5)
C150.0149 (6)0.0140 (6)0.0145 (6)0.0031 (5)−0.0007 (5)0.0000 (5)
O160.0177 (4)0.0152 (5)0.0219 (5)−0.0020 (3)−0.0016 (4)0.0040 (4)
N170.0142 (5)0.0177 (5)0.0162 (5)−0.0005 (4)−0.0008 (4)0.0008 (5)
O180.0143 (4)0.0205 (5)0.0274 (5)0.0040 (4)−0.0012 (4)0.0025 (4)
O190.0181 (5)0.0180 (5)0.0378 (6)−0.0050 (4)−0.0061 (4)0.0062 (5)
N200.0166 (5)0.0149 (6)0.0186 (6)−0.0005 (4)−0.0009 (5)0.0007 (4)
O210.0201 (4)0.0144 (5)0.0235 (5)0.0035 (4)−0.0005 (4)0.0049 (4)
O220.0146 (5)0.0267 (5)0.0389 (6)−0.0060 (4)−0.0035 (4)0.0098 (5)
N230.0135 (5)0.0193 (6)0.0156 (5)0.0017 (4)0.0009 (4)0.0034 (5)
O240.0221 (5)0.0140 (5)0.0360 (6)0.0036 (4)−0.0007 (5)0.0041 (4)
O250.0162 (4)0.0271 (5)0.0188 (5)0.0020 (4)−0.0047 (4)0.0004 (4)

Geometric parameters (Å, °)

C1—C21.3826 (19)C9—H9C0.997 (18)
C1—C61.3910 (19)C10—O161.2488 (17)
C1—N71.4874 (16)C10—C151.4537 (18)
C2—C31.3926 (19)C10—C111.4538 (18)
C2—H20.931 (18)C11—C121.3794 (19)
C3—C41.389 (2)C11—N171.4475 (16)
C3—H30.934 (18)C12—C131.3758 (18)
C4—C51.389 (2)C12—H120.935 (18)
C4—H40.924 (19)C13—C141.3985 (18)
C5—C61.391 (2)C13—N201.4417 (17)
C5—H50.942 (19)C14—C151.3661 (18)
C6—H60.951 (18)C14—H140.941 (18)
N7—C91.4962 (18)C15—N231.4652 (16)
N7—C81.4980 (18)N17—O191.2344 (14)
N7—H70.892 (17)N17—O181.2348 (14)
C8—H8A1.001 (18)N20—O221.2326 (15)
C8—H8B1.017 (18)N20—O211.2353 (15)
C8—H8C0.99 (2)N23—O241.2273 (15)
C9—H9A0.953 (17)N23—O251.2291 (15)
C9—H9B0.974 (19)
C2—C1—C6122.34 (12)H9A—C9—H9B106.3 (14)
C2—C1—N7117.85 (11)N7—C9—H9C109.3 (10)
C6—C1—N7119.76 (11)H9A—C9—H9C113.0 (14)
C1—C2—C3118.35 (12)H9B—C9—H9C108.9 (14)
C1—C2—H2119.5 (10)O16—C10—C15122.53 (12)
C3—C2—H2122.1 (10)O16—C10—C11125.98 (11)
C4—C3—C2120.66 (13)C15—C10—C11111.39 (11)
C4—C3—H3118.4 (11)C12—C11—N17115.67 (11)
C2—C3—H3120.9 (11)C12—C11—C10124.13 (11)
C3—C4—C5119.77 (13)N17—C11—C10120.21 (11)
C3—C4—H4117.9 (11)C13—C12—C11119.44 (12)
C5—C4—H4122.3 (11)C13—C12—H12119.8 (10)
C4—C5—C6120.67 (13)C11—C12—H12120.7 (10)
C4—C5—H5122.1 (11)C12—C13—C14121.33 (12)
C6—C5—H5117.2 (11)C12—C13—N20119.13 (11)
C1—C6—C5118.20 (13)C14—C13—N20119.47 (11)
C1—C6—H6121.1 (10)C15—C14—C13118.50 (11)
C5—C6—H6120.7 (10)C15—C14—H14121.0 (10)
C1—N7—C9110.38 (10)C13—C14—H14120.5 (10)
C1—N7—C8113.16 (11)C14—C15—C10125.18 (12)
C9—N7—C8111.39 (11)C14—C15—N23116.42 (11)
C1—N7—H7105.0 (10)C10—C15—N23118.37 (11)
C9—N7—H7110.3 (12)O19—N17—O18122.24 (10)
C8—N7—H7106.3 (11)O19—N17—C11119.19 (10)
N7—C8—H8A108.2 (10)O18—N17—C11118.55 (10)
N7—C8—H8B109.3 (11)O22—N20—O21123.25 (11)
H8A—C8—H8B111.3 (14)O22—N20—C13118.55 (11)
N7—C8—H8C108.4 (12)O21—N20—C13118.20 (10)
H8A—C8—H8C108.1 (15)O24—N23—O25123.96 (11)
H8B—C8—H8C111.3 (16)O24—N23—C15118.88 (11)
N7—C9—H9A108.2 (11)O25—N23—C15117.15 (11)
N7—C9—H9B111.2 (11)
C6—C1—C2—C31.1 (2)C12—C13—C14—C15−2.10 (19)
N7—C1—C2—C3178.45 (12)N20—C13—C14—C15−178.99 (12)
C1—C2—C3—C40.0 (2)C13—C14—C15—C100.2 (2)
C2—C3—C4—C5−0.9 (2)C13—C14—C15—N23178.23 (11)
C3—C4—C5—C60.9 (2)O16—C10—C15—C14177.99 (13)
C2—C1—C6—C5−1.1 (2)C11—C10—C15—C141.40 (19)
N7—C1—C6—C5−178.45 (12)O16—C10—C15—N230.00 (19)
C4—C5—C6—C10.1 (2)C11—C10—C15—N23−176.58 (11)
C2—C1—N7—C9−100.90 (13)C12—C11—N17—O19−161.31 (13)
C6—C1—N7—C976.55 (15)C10—C11—N17—O1919.03 (18)
C2—C1—N7—C8133.51 (13)C12—C11—N17—O1817.45 (17)
C6—C1—N7—C8−49.04 (16)C10—C11—N17—O18−162.20 (12)
O16—C10—C11—C12−177.78 (13)C12—C13—N20—O22177.52 (12)
C15—C10—C11—C12−1.34 (18)C14—C13—N20—O22−5.53 (19)
O16—C10—C11—N171.8 (2)C12—C13—N20—O21−3.32 (18)
C15—C10—C11—N17178.28 (11)C14—C13—N20—O21173.63 (12)
N17—C11—C12—C13−179.98 (11)C14—C15—N23—O24138.87 (13)
C10—C11—C12—C13−0.3 (2)C10—C15—N23—O24−42.97 (17)
C11—C12—C13—C142.17 (19)C14—C15—N23—O25−40.50 (17)
C11—C12—C13—N20179.06 (12)C10—C15—N23—O25137.66 (12)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N7—H7···O160.892 (17)1.825 (18)2.7128 (14)172.8 (16)
N7—H7···O190.892 (17)2.578 (16)3.0517 (15)114.0 (12)
C2—H2···O160.931 (18)2.341 (17)3.0464 (16)132.4 (13)
C2—H2···O240.931 (18)2.498 (17)3.3444 (17)151.4 (14)
C8—H8A···O191.001 (18)2.411 (18)3.1171 (18)126.9 (13)
C9—H9C···O190.997 (18)2.592 (17)3.2311 (17)121.9 (12)
C9—H9B···O21i0.974 (19)2.571 (19)3.5074 (17)161.3 (14)
C9—H9B···O25ii0.974 (19)2.476 (18)3.0794 (18)119.9 (13)
C4—H4···O21iii0.924 (19)2.466 (18)3.1776 (16)134.0 (14)
C14—H14···O19iv0.941 (18)2.564 (18)3.4988 (16)172.3 (14)
C9—H9C···O22v0.997 (18)2.502 (18)3.3283 (16)140.0 (13)

Symmetry codes: (i) x, y+1, z; (ii) −x+1/2, y+1/2, z+1/2; (iii) −x+1/2, y+3/2, z−1/2; (iv) x−1/2, −y+3/2, z; (v) x+1/2, −y+3/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2565).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Botoshansky, M., Herbstein, F. H. & Kapon, M. (1994). Acta Cryst. B50, 191–200. [PubMed]
  • Bruker (2006). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Desiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier.
  • Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York, Oxford University Press.
  • Etter, M. C. (1990). Acc. Chem. Res.23, 120–126.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • In, Y., Nagata, H., Doi, M., Ishida, T. & Wakahara, A. (1997). Acta Cryst. C53, 367–369.
  • Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding New York, Oxford University Press.
  • Mizutani, T., Takagi, H., Ueno, Y., Honiguchi, T., Yamamura, K. & Ogoshi, H. (1998). J. Phys. Org. Chem.11, 737–742.
  • Pecaut, J. & Bagieu-Beucher, M. (1993). Acta Cryst. C49, 834–837.
  • Sheldrick, G. M. (1996). SADABS University of Gottingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Takayanagi, H., Kai, T., Yamaguchi, S.-I., Takeda, K. & Goto, M. (1996). Chem. Pharm. Bull.44, 2199–2204.
  • Vembu, N., Nallu, M., Garrison, J. & Youngs, W. J. (2003). Acta Cryst. E59, o913–o916.
  • Zaderenko, P., Gil, M. S., López, P., Ballesteros, P., Fonseca, I. & Albert, A. (1997). Acta Cryst. B53, 961–967.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography