PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 January 1; 65(Pt 1): o109–o110.
Published online 2008 December 13. doi:  10.1107/S1600536808041603
PMCID: PMC2968033

1,3-Bis[4-(dimethyl­amino)benz­yl]-4,5,6,7-tetra­hydro-1H-1,3-diazepan-2-ium chloride

Abstract

The title N-heterocyclic carbene derivative, C23H33N4 +·Cl, has been synthesized and characterized by elemental analysis, 1H and 13C NMR, IR spectroscopy and a single-crystal X-ray diffraction study. Ions of the title compound are linked by three C—H(...)Cl inter­actions. The seven-membered 1,3-diazepane ring has a form inter­mediate between twist-chair and twist-boat.

Related literature

For the synthesis, see: Özdemir et al. (2005 [triangle]); Yaşar et al. (2008 [triangle]). For general background, see: Hermann (2002 [triangle]); Littke & Fu (2002 [triangle]); Evans & Boeyens (1989 [triangle]). For puckering parameters, see: Cremer & Pople (1975 [triangle]). For related compounds, see: Arslan et al. (2007a [triangle],b [triangle],c [triangle]). For general background to the use of N-heterocyclic carbenes as phosphine mimics and in catalysis, see: Arduengo & Krafczyk (1998 [triangle]); Dullius et al. (1998 [triangle]); Glorius (2007 [triangle]); Hermann & Köcher (1997 [triangle]); Nolan (2006 [triangle]); Regitz (1996 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o109-scheme1.jpg

Experimental

Crystal data

  • C23H33N4 +·Cl
  • M r = 400.98
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o109-efi1.jpg
  • a = 22.663 (5) Å
  • b = 10.081 (2) Å
  • c = 9.6368 (19) Å
  • V = 2201.7 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.19 mm−1
  • T = 153 (2) K
  • 0.46 × 0.12 × 0.07 mm

Data collection

  • Rigaku Mercury CCD diffractometer
  • Absorption correction: multi-scan (REQAB; Jacobson, 1998 [triangle]) T min = 0.918, T max = 0.987
  • 14704 measured reflections
  • 1947 independent reflections
  • 1481 reflections with I > 2σ(I)
  • R int = 0.053

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059
  • wR(F 2) = 0.160
  • S = 1.10
  • 1947 reflections
  • 130 parameters
  • H-atom parameters constrained
  • Δρmax = 0.28 e Å−3
  • Δρmin = −0.30 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2001 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808041603/hg2445sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808041603/hg2445Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Technological and Scientific Research Council of Turkey TÜBİTAK-CNRS [TBAG-U/181 (106 T716)] and İnonu University research fund (BAP 2008/03 Güdümlü) for financial support.

supplementary crystallographic information

Comment

N-heterocyclic carbenes, which can be considered phosphine mimics, have attracted considerable attentionas possible alternatives for widely used phosphine ligands (Regitz, 1996; Hermann & Köcher, 1997; Arduengo & Krafczyk, 1998; Dullius et al., 1998; Evans & Boeyens, 1989; Hermann, 2002; Littke & Fu, 2002). N-heterocyclic carbene-containing metal complexes have also revealed excellent catalytic properties in a wide range of metal-catalyzed transformations (Glorius, 2007; Nolan, 2006). Catalysts containing these ligands are useful in Heck, Suzuki and Sonogashira couplings, Buchwald Hartwig amination, olefin metathesis, hydroformylation and hydrogenation.

In recent years, we have pursued investigations on the synthesis, characterization, crystal structure, and catalytic activities of new N-heterocyclic carbene derivatives (Yaşar et al., 2008; Arslan et al., 2007a, 2007b, 2007c). In the present work, we report the preparation and characterization of a novel N-heterocyclic carbene derivative, 1,3-bis(4-(dimethylamino)benzyl)-4,5,6,7-tetrahydro-1H-1,3-diazepin-2-ium chloride, (I). The ligand was purified by re-crystallization from an ethanol:diethylether mixture (1:2) and was characterized by elemental analysis and 1H and 13C-NMR spectroscopy. The analytical and spectroscopic data are consistent with the proposed structure given in Scheme 1.

The molecular structure of the title compound, (I), is depicted in Fig. 1. The structure consists of a 1,3-bis(4-(dimethylamino)benzyl)-4,5,6,7-tetrahydro-1H-1,3-diazepin-2-ium cation and a Cl-anion. All bond lengths are in normal ranges (Allen et al., 1987). A seven-membered ring should have the chair, the boat, the twist chair or the twist boat according to Cremer & Pople (1975). The conformation of a seven-membered ring can be numerically described by four ring puckering parameters, q2, q3, [var phi]2 and [var phi]3. The 1,3-diazepane ring exhibits a puckered conformation, with puckering parameters Cremer & Pople (1975), q2= 0.374 (3) Å, q3 = 0.462 (3) Å, [var phi]2= 347.1 (4) °, [var phi]3= 115.7 (3)°, and QT= 0.595 (3) Å. The largest deviations from the mean plane are 0.403 (3) Å for atoms C3 and C3A. q2 should be 0 for a 100% twist chair form. According to Cremer & Pople ring-puckering analysis results, the 1,3-diazepane seven-membered ring can be accurately described as an intermediate form between the 44% twist chair form and the 55% twist boat form.

The crystal packing is shown in Fig. 2. Although there are no intramolecular D—H···A contacts, intermolecular C—H···Cl hydrogen bonds link the molecules of (I) into one-dimensional chains extending along the [010] direction (Fig. 3, Table 1) (Macrae et al., 2006).

Experimental

To a solution of 1,4-bis(p-dimethylaminobenzylamino)butane (1 mmol) CH(OEt)3 (30 ml), NH4Cl (1 mmol) was added; the reaction mixture was heated for 18 h at 100 °C (Scheme 2). A white solid was precipitated. Then, the precipitate was crystallized from EtOH-Et2O (1:2) mixture (Özdemir et al., 2005). 1,3-bis(4-(dimethylamino)benzyl)-4,5,6,7-tetrahydro-1H-1,3-diazepin-2-ium chloride: Yield: 3.11 g (92%), M.p. 247–248 °C. 1H NMR (300.13 MHz, DMSO) δ = 1.68 (quintet, J = 6.8 Hz, 4H, NCH2CH2CH2CH2N), 2.89 (s, 12H, p-(CH3)2NC6H4CH2), 3.52 (t, J = 6.8 Hz, 4H, NCH2CH2CH2CH2N), 4.54 (s, 4H, p-(CH3)2NC6H4CH2), 6.73 and 7.27 (d, J =8.4 Hz, 8H, p-(CH3)2NC6H4CH2), 8.87 (s,1H, 2-CH). 13C{1H}NMR (75.47 MHz, DMSO): δ = 24.7, 48.7 (NCH2CH2CH2CH2N), 40.7 (p-(CH3)2NC6H4CH2), 60.1 (p-(CH3)2NC6H4CH2), 112.9, 122.2, 130.1, 151.1 (p-(CH3)2NC6H4CH2), 158.3 (2-CH). Anal. Calcd. for C23H33N4Cl: C, 68.89; H, 8.29; N, 13.97. Found: C, 68.88; H, 8.30; N, 13.94.

Figures

Fig. 1.
The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level.
Fig. 2.
A packing diagram for (I).
Fig. 3.
Part of the crystal structure of (I), showing the formation of linear chains of hydrogen-bonded (dashed lines) cations and anions along the [010] direction.
Fig. 4.
The formation of the title compound.

Crystal data

C23H33N4+·ClF(000) = 864
Mr = 400.98Dx = 1.210 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 5004 reflections
a = 22.663 (5) Åθ = 3.1–26.4°
b = 10.081 (2) ŵ = 0.19 mm1
c = 9.6368 (19) ÅT = 153 K
V = 2201.7 (8) Å3Rod, colorless
Z = 40.46 × 0.12 × 0.07 mm

Data collection

Rigaku Mercury CCD diffractometer1947 independent reflections
Radiation source: Sealed Tube1481 reflections with I > 2σ(I)
Graphite MonochromatorRint = 0.053
Detector resolution: 14.6306 pixels mm-1θmax = 25.1°, θmin = 3.1°
ω scansh = −27→23
Absorption correction: multi-scan (REQAB; Jacobson, 1998)k = −12→11
Tmin = 0.918, Tmax = 0.987l = −11→11
14704 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160H-atom parameters constrained
S = 1.10w = 1/[σ2(Fo2) + (0.0629P)2 + 3.1587P] where P = (Fo2 + 2Fc2)/3
1947 reflections(Δ/σ)max < 0.001
130 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = −0.30 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.50000.27328 (9)0.25000.0326 (3)
N10.53058 (10)0.3281 (2)0.8530 (2)0.0263 (5)
N20.81399 (11)0.3446 (3)0.8340 (3)0.0465 (8)
C10.50000.3809 (4)0.75000.0234 (8)
H10.50000.47610.75000.028*
C20.54103 (13)0.1885 (3)0.8905 (3)0.0320 (7)
H2A0.53910.18100.98970.038*
H2B0.58050.16560.86310.038*
C30.49952 (13)0.0887 (3)0.8287 (3)0.0299 (7)
H3A0.46020.10740.85990.036*
H3B0.51000.00190.86160.036*
C40.56701 (12)0.4207 (3)0.9380 (3)0.0286 (6)
H4A0.55880.40621.03450.034*
H4B0.55640.51040.91600.034*
C50.63188 (12)0.4015 (3)0.9123 (3)0.0280 (6)
C60.65910 (13)0.4560 (3)0.7968 (3)0.0361 (7)
H60.63590.50680.73270.043*
C70.71893 (14)0.4394 (3)0.7709 (4)0.0410 (8)
H70.73640.47910.69020.049*
C80.75396 (13)0.3648 (3)0.8622 (3)0.0359 (7)
C90.72698 (13)0.3100 (3)0.9785 (3)0.0359 (7)
H90.75000.25851.04250.043*
C100.66696 (13)0.3289 (3)1.0031 (3)0.0316 (7)
H100.64940.29091.08460.038*
C110.84333 (15)0.4411 (4)0.7441 (5)0.0577 (11)
H11A0.82430.44240.65520.087*
H11B0.88400.41660.73280.087*
H11C0.84100.52760.78540.087*
C120.85025 (15)0.2829 (4)0.9408 (4)0.0569 (11)
H12A0.85010.33741.02250.085*
H12B0.89000.27370.90740.085*
H12C0.83460.19700.96280.085*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0410 (6)0.0223 (5)0.0347 (5)0.0000.0031 (4)0.000
N10.0280 (12)0.0207 (11)0.0302 (12)−0.0008 (9)0.0021 (10)−0.0010 (10)
N20.0300 (14)0.0458 (17)0.064 (2)−0.0016 (12)0.0035 (13)−0.0117 (15)
C10.0210 (17)0.0196 (18)0.030 (2)0.0000.0053 (16)0.000
C20.0399 (16)0.0206 (14)0.0356 (16)0.0035 (12)−0.0043 (13)0.0019 (12)
C30.0376 (15)0.0191 (13)0.0331 (16)0.0013 (12)0.0030 (13)0.0035 (11)
C40.0303 (14)0.0239 (14)0.0315 (15)0.0006 (11)0.0013 (12)−0.0053 (12)
C50.0300 (15)0.0251 (14)0.0290 (15)−0.0003 (11)0.0000 (11)−0.0032 (12)
C60.0331 (16)0.0372 (17)0.0379 (17)0.0004 (13)0.0013 (13)0.0056 (14)
C70.0386 (17)0.0415 (18)0.0430 (19)−0.0055 (14)0.0073 (14)0.0058 (15)
C80.0299 (15)0.0327 (16)0.0450 (17)−0.0011 (12)0.0007 (14)−0.0093 (14)
C90.0353 (16)0.0350 (17)0.0373 (17)0.0069 (13)−0.0062 (13)−0.0036 (14)
C100.0348 (16)0.0299 (15)0.0300 (15)−0.0002 (12)0.0000 (12)−0.0013 (13)
C110.0358 (18)0.045 (2)0.092 (3)−0.0136 (15)0.0185 (19)−0.014 (2)
C120.0326 (17)0.067 (3)0.071 (3)0.0097 (17)−0.0076 (18)−0.024 (2)

Geometric parameters (Å, °)

N1—C11.322 (3)C5—C61.386 (4)
N1—C21.472 (3)C5—C101.391 (4)
N1—C41.491 (3)C6—C71.389 (4)
N2—C81.402 (4)C6—H60.9600
N2—C121.456 (5)C7—C81.404 (5)
N2—C111.462 (5)C7—H70.9600
C1—N1i1.322 (3)C8—C91.391 (4)
C1—H10.9600C9—C101.394 (4)
C2—C31.501 (4)C9—H90.9600
C2—H2A0.9600C10—H100.9600
C2—H2B0.9600C11—H11A0.9599
C3—C3i1.517 (6)C11—H11B0.9599
C3—H3A0.9600C11—H11C0.9599
C3—H3B0.9600C12—H12A0.9599
C4—C51.503 (4)C12—H12B0.9599
C4—H4A0.9600C12—H12C0.9599
C4—H4B0.9600
C1—N1—C2130.8 (3)C10—C5—C4121.5 (3)
C1—N1—C4116.8 (2)C5—C6—C7122.1 (3)
C2—N1—C4112.0 (2)C5—C6—H6119.0
C8—N2—C12118.2 (3)C7—C6—H6119.0
C8—N2—C11117.3 (3)C6—C7—C8120.3 (3)
C12—N2—C11116.5 (3)C6—C7—H7119.9
N1i—C1—N1132.6 (4)C8—C7—H7119.9
N1i—C1—H1113.7C9—C8—N2121.7 (3)
N1—C1—H1113.7C9—C8—C7118.0 (3)
N1—C2—C3116.3 (2)N2—C8—C7120.3 (3)
N1—C2—H2A108.2C8—C9—C10120.8 (3)
C3—C2—H2A108.2C8—C9—H9119.6
N1—C2—H2B108.2C10—C9—H9119.6
C3—C2—H2B108.2C5—C10—C9121.5 (3)
H2A—C2—H2B107.4C5—C10—H10119.2
C2—C3—C3i112.8 (2)C9—C10—H10119.2
C2—C3—H3A109.0N2—C11—H11A109.5
C3i—C3—H3A109.0N2—C11—H11B109.5
C2—C3—H3B109.0H11A—C11—H11B109.5
C3i—C3—H3B109.0N2—C11—H11C109.5
H3A—C3—H3B107.8H11A—C11—H11C109.5
N1—C4—C5111.8 (2)H11B—C11—H11C109.5
N1—C4—H4A109.3N2—C12—H12A109.5
C5—C4—H4A109.3N2—C12—H12B109.5
N1—C4—H4B109.3H12A—C12—H12B109.5
C5—C4—H4B109.3N2—C12—H12C109.5
H4A—C4—H4B107.9H12A—C12—H12C109.5
C6—C5—C10117.4 (3)H12B—C12—H12C109.5
C6—C5—C4121.1 (3)
C2—N1—C1—N1i−0.7 (2)C12—N2—C8—C9−10.0 (4)
C4—N1—C1—N1i171.0 (2)C11—N2—C8—C9−157.9 (3)
C1—N1—C2—C3−18.0 (4)C12—N2—C8—C7171.5 (3)
C4—N1—C2—C3170.0 (2)C11—N2—C8—C723.6 (5)
N1—C2—C3—C3i59.9 (4)C6—C7—C8—C9−0.5 (5)
C1—N1—C4—C5−109.3 (2)C6—C7—C8—N2178.0 (3)
C2—N1—C4—C563.9 (3)N2—C8—C9—C10−178.6 (3)
N1—C4—C5—C680.0 (3)C7—C8—C9—C10−0.1 (5)
N1—C4—C5—C10−100.1 (3)C6—C5—C10—C9−0.8 (4)
C10—C5—C6—C70.2 (5)C4—C5—C10—C9179.3 (3)
C4—C5—C6—C7−179.9 (3)C8—C9—C10—C50.7 (5)
C5—C6—C7—C80.4 (5)

Symmetry codes: (i) −x+1, y, −z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C1—H1···Cl1ii0.962.533.486 (4)180
C2—H2A···Cl1iii0.962.823.688 (3)151
C4—H4A···Cl1iii0.962.813.682 (3)152

Symmetry codes: (ii) −x+1, −y+1, −z+1; (iii) x, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2445).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & &Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Arduengo, A. J. & Krafczyk, R. (1998). Chem. Unserer. Z.32, 6–14.
  • Arslan, H., VanDerveer, D., Özdemir, İ., Demir, S. & Çetinkaya, B. (2007a). Acta Cryst. E63, m770–m771.
  • Arslan, H., VanDerveer, D., Yaşar, S., Özdemir, I. & Çetinkaya, B. (2007b). Acta Cryst. E63, m942–m944.
  • Arslan, H., VanDerveer, D., Yaşar, S., Özdemir, İ. & Çetinkaya, B. (2007c). Acta Cryst. E63, m1001–m1003.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Dullius, J. E. L., Suarez, P. A. Z., Einloft, S., de Souza, R. F., Dupont, J., Fischer, J. & De Cian, A. (1998). Organometallics, 17, 815-819.
  • Evans, D. G. & Boeyens, J. C. A. (1989). Acta Cryst. B45, 581–590.
  • Glorius, F. (2007). Topics in Organometallic Chemistry, Vol. 21, N-Heterocyclic Carbenes inTransition Metal Catalysis Heidelberg: Springer.
  • Hermann, W. A. (2002). Angew. Chem. Int. Ed.41, 1290–1309. [PubMed]
  • Hermann, W. A. & Köcher, C. (1997). Angew. Chem. Int. Ed. Engl.36, 2162–2187.
  • Jacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas,USA.
  • Littke, A. F. & Fu, G. C. (2002). Angew. Chem. Int. Ed.41, 4176–4211. [PubMed]
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Nolan, S. P. (2006). N-HeterocyclicCarbenes in Synthesis Weinheim: Wiley.
  • Özdemir, I., Gürbüz, N., Gök, Y., Çetinkaya, E. & Çetinkaya, B. (2005). Synlett, 15, 2394–2396.
  • Regitz, M. (1996). Angew. Chem. Int. Ed. Engl.35, 725–728.
  • Rigaku/MSC (2001). CrystalClear Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Yaşar, S., Özdemir, I., Çetinkaya, B., Renaud, J. & Bruneau, L. (2008). Eur. J. Org. Chem.12, 2142–2149.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography