PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 January 1; 65(Pt 1): o108.
Published online 2008 December 13. doi:  10.1107/S1600536808041767
PMCID: PMC2968032

Trispyrazol-1-ylmethane

Abstract

In the title compound, C10H10N6, the three N atoms in the 2-positions of the pyrazole rings (the ones not bridging to the central C atom are acceptors for weak C—H(...)N contacts with H(...)N distances ranging from 2.49 to 2.59 Å). These furnish the formation of layers perpendicular to [100]. An ortho­rhom­bic polymorph of the title compound has already been described [McLauchlan et al. (2004 [triangle]). Acta Cryst. E60, o1419–o1420].

Related literature

The compound was prepared according to a published procedure (Reger et al., 2000 [triangle]). For a structure analysis of the ortho­rhom­bic polymorph, see: McLauchlan et al. (2004 [triangle]). For classification of hydrogen bonds, see: Bernstein et al. (1995 [triangle]); Etter et al. (1990 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o108-scheme1.jpg

Experimental

Crystal data

  • C10H10N6
  • M r = 214.24
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o108-efi1.jpg
  • a = 7.7216 (9) Å
  • b = 7.8946 (6) Å
  • c = 9.4143 (10) Å
  • α = 99.292 (8)°
  • β = 100.023 (9)°
  • γ = 107.045 (9)°
  • V = 526.36 (10) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 200 (2) K
  • 0.34 × 0.20 × 0.14 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: analytical (de Meulenaer & Tompa, 1965 [triangle]) T min = 0.975, T max = 0.989
  • 4340 measured reflections
  • 2117 independent reflections
  • 1054 reflections with I > 2σ(I)
  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.082
  • S = 0.83
  • 2117 reflections
  • 145 parameters
  • H-atom parameters constrained
  • Δρmax = 0.13 e Å−3
  • Δρmin = −0.18 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2005 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2005 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808041767/bt2828sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808041767/bt2828Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

TK thanks the Hanns-Seidel-Stiftung for a PhD scholarship financed by the Bundesministerium für Bildung und Forschung.

supplementary crystallographic information

Comment

The title compound was synthesized as a neutral tridentate ligand for coordination studies with transition metals.

In the molecule, three pyrazole moieties are N-bound to a central C atom (Fig. 1). The molecule is found in a non-symmetric conformation in the solid state. The highest possible symmetry C3v is broken by the ring containing N4 which is flipped by about 180°.

If only such contacts whose range falls by about 0.2 Å below the sum of van der Waals radii are considered, the crystal structure shows two C–H···N contacts. Infinite strands along [0 1 0] are formed by C6—H6···N2 contacts (Fig. 2). This pattern can be described according to graph-set analysis (Etter et al., 1990; Bernstein et al., 1995) with a C(7) descriptor on the unitary level. In addition, dimeric units are formed by interaction of the H atom of C10 and N6 (Fig. 3). These dimers can be described with a R22(8) descriptor on the unitary level. Both these described interactions give rise to tubes along [0 1 0].

Considering also contacts whose range falls below the sum of van der Waals radii by only about 0.1 Å, a second dimeric ring system is obvious with a R22(12) descriptor formed by the H atom of C1 and N4 (Fig. 4). In combination with the interactions described above, this second ring system features the formation of layers perpendicular to [1 0 0] (Fig. 5).

The molecular packing is shown in Figure 6.

Experimental

The compound was prepared according to a published procedure (Reger et al., 2000) upon reaction of pyrazole and chloroform in alkaline aqueous media in the presence of a phase-transfer catalyst (tetrabutylammonium chloride).

Refinement

Carbon-bound H atoms were placed in calculated positions (C—H 1.00 Å for the tertiary C atom and C—H 0.95 Å for aromatic C atoms) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of the title compound with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level) for non-H atoms.
Fig. 2.
Strands formed by intermolecular C–H···N contacts in the crystal structure of the title compound, viewed along [1 0 0]. Symmetry codes: ix, y - 1, z; iix, y + 1, z.
Fig. 3.
Dimeric units in the crystal structure of the title compound, formed by intermolecular C–H···N contacts whose ranges fall by about 0.2 Å below the sum of van der Waals radii of the corresponding atoms, viewed along ...
Fig. 4.
Dimeric units in the crystal structure of the title compound, formed by intermolecular C–H···N contacts whose ranges fall by about 0.1 Å below the sum of van der Waals radii of the corresponding atoms, viewed along ...
Fig. 5.
Schematic presentation of the layers formed by C—H···N contacts. Viewing direction approximately along [1 0 0].
Fig. 6.
The packing of the title compound, viewed along [0 1 0].

Crystal data

C10H10N6Z = 2
Mr = 214.24F(000) = 224
Triclinic, P1Dx = 1.352 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7216 (9) ÅCell parameters from 1494 reflections
b = 7.8946 (6) Åθ = 3.9–26.3°
c = 9.4143 (10) ŵ = 0.09 mm1
α = 99.292 (8)°T = 200 K
β = 100.023 (9)°Block, colourless
γ = 107.045 (9)°0.34 × 0.20 × 0.14 mm
V = 526.36 (10) Å3

Data collection

Nonius KappaCCD diffractometer2117 independent reflections
Radiation source: fine-focus sealed tube1054 reflections with I > 2σ(I)
graphiteRint = 0.030
ω scansθmax = 26.3°, θmin = 3.9°
Absorption correction: analytical (de Meulenaer & Tompa, 1965)h = −9→9
Tmin = 0.975, Tmax = 0.989k = −9→9
4340 measured reflectionsl = −11→11

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H-atom parameters constrained
S = 0.83w = 1/[σ2(Fo2) + (0.04P)2] where P = (Fo2 + 2Fc2)/3
2117 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = −0.18 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N50.36455 (16)0.27051 (16)0.27731 (13)0.0334 (3)
N10.64066 (18)0.38873 (17)0.19270 (15)0.0379 (3)
N60.28341 (18)0.38479 (16)0.33973 (14)0.0409 (4)
N30.63243 (17)0.18619 (16)0.35571 (14)0.0367 (3)
C100.5661 (2)0.32745 (19)0.31338 (16)0.0334 (4)
H100.61250.43320.40050.040*
N20.78449 (19)0.54772 (17)0.22761 (17)0.0539 (4)
N40.6002 (2)0.02927 (18)0.25599 (16)0.0517 (4)
C70.1030 (2)0.2989 (2)0.28350 (19)0.0491 (5)
H70.00860.34530.30720.059*
C40.7280 (2)0.1888 (2)0.49067 (19)0.0489 (5)
H40.76520.28450.57660.059*
C90.2372 (2)0.1197 (2)0.18445 (18)0.0444 (4)
H90.26190.02190.12830.053*
C80.0671 (2)0.1351 (2)0.18683 (18)0.0497 (5)
H8−0.05100.05110.13350.060*
C60.6797 (3)−0.0647 (2)0.3351 (2)0.0582 (5)
H60.6807−0.18300.29610.070*
C10.5986 (3)0.3080 (2)0.0478 (2)0.0535 (5)
H10.50390.1956−0.00040.064*
C20.7163 (3)0.4167 (3)−0.0163 (2)0.0641 (6)
H20.72150.3975−0.11750.077*
C30.8267 (3)0.5611 (3)0.0972 (3)0.0656 (6)
H30.92310.66020.08420.079*
C50.7606 (3)0.0283 (3)0.4800 (2)0.0599 (5)
H50.8254−0.01170.55600.072*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N50.0307 (8)0.0385 (8)0.0336 (8)0.0143 (6)0.0090 (7)0.0083 (6)
N10.0393 (8)0.0377 (8)0.0436 (9)0.0164 (6)0.0167 (7)0.0141 (7)
N60.0413 (9)0.0479 (8)0.0409 (9)0.0237 (7)0.0141 (7)0.0087 (7)
N30.0416 (8)0.0411 (8)0.0325 (8)0.0213 (6)0.0091 (7)0.0085 (7)
C100.0334 (9)0.0360 (9)0.0325 (9)0.0149 (7)0.0079 (8)0.0062 (7)
N20.0499 (9)0.0383 (9)0.0822 (12)0.0167 (7)0.0294 (9)0.0183 (8)
N40.0703 (10)0.0433 (9)0.0505 (10)0.0312 (8)0.0175 (8)0.0085 (8)
C70.0349 (11)0.0708 (13)0.0519 (12)0.0241 (9)0.0156 (9)0.0242 (10)
C40.0463 (11)0.0698 (13)0.0410 (11)0.0276 (9)0.0133 (9)0.0221 (9)
C90.0423 (11)0.0436 (11)0.0377 (11)0.0079 (9)0.0037 (9)0.0004 (8)
C80.0372 (11)0.0635 (13)0.0390 (11)0.0066 (9)0.0030 (9)0.0105 (9)
C60.0707 (13)0.0529 (12)0.0802 (16)0.0404 (11)0.0395 (13)0.0348 (12)
C10.0595 (12)0.0647 (12)0.0408 (11)0.0214 (10)0.0187 (10)0.0154 (10)
C20.0760 (15)0.0869 (15)0.0625 (14)0.0479 (12)0.0409 (13)0.0427 (13)
C30.0698 (14)0.0579 (13)0.0996 (18)0.0327 (11)0.0552 (15)0.0422 (13)
C50.0639 (13)0.0855 (15)0.0598 (14)0.0454 (11)0.0279 (12)0.0449 (12)

Geometric parameters (Å, °)

N5—C91.3516 (18)C7—H70.9500
N5—N61.3565 (15)C4—C51.354 (2)
N5—C101.4475 (18)C4—H40.9500
N1—C11.348 (2)C9—C81.357 (2)
N1—N21.3562 (16)C9—H90.9500
N1—C101.4486 (17)C8—H80.9500
N6—C71.3243 (19)C6—C51.378 (2)
N3—C41.3473 (19)C6—H60.9500
N3—N41.3566 (16)C1—C21.351 (2)
N3—C101.4397 (18)C1—H10.9500
C10—H101.0000C2—C31.373 (3)
N2—C31.336 (2)C2—H20.9500
N4—C61.330 (2)C3—H30.9500
C7—C81.378 (2)C5—H50.9500
C9—N5—N6111.92 (13)C5—C4—H4126.7
C9—N5—C10130.33 (14)N5—C9—C8106.78 (15)
N6—N5—C10117.71 (12)N5—C9—H9126.6
C1—N1—N2112.14 (13)C8—C9—H9126.6
C1—N1—C10130.61 (13)C9—C8—C7105.04 (15)
N2—N1—C10117.11 (13)C9—C8—H8127.5
C7—N6—N5103.53 (12)C7—C8—H8127.5
C4—N3—N4112.51 (13)N4—C6—C5112.70 (17)
C4—N3—C10126.82 (14)N4—C6—H6123.7
N4—N3—C10120.67 (13)C5—C6—H6123.7
N3—C10—N5111.58 (11)N1—C1—C2107.29 (16)
N3—C10—N1111.25 (11)N1—C1—H1126.4
N5—C10—N1111.28 (12)C2—C1—H1126.4
N3—C10—H10107.5C1—C2—C3104.79 (17)
N5—C10—H10107.5C1—C2—H2127.6
N1—C10—H10107.5C3—C2—H2127.6
C3—N2—N1102.69 (15)N2—C3—C2113.08 (16)
C6—N4—N3102.95 (14)N2—C3—H3123.5
N6—C7—C8112.73 (15)C2—C3—H3123.5
N6—C7—H7123.6C4—C5—C6105.23 (17)
C8—C7—H7123.6C4—C5—H5127.4
N3—C4—C5106.61 (16)C6—C5—H5127.4
N3—C4—H4126.7
C9—N5—N6—C70.54 (15)C10—N3—N4—C6−179.60 (13)
C10—N5—N6—C7178.36 (12)N5—N6—C7—C8−0.47 (17)
C4—N3—C10—N5−113.15 (16)N4—N3—C4—C50.17 (17)
N4—N3—C10—N566.40 (16)C10—N3—C4—C5179.76 (13)
C4—N3—C10—N1121.92 (15)N6—N5—C9—C8−0.41 (17)
N4—N3—C10—N1−58.53 (17)C10—N5—C9—C8−177.88 (13)
C9—N5—C10—N3−51.4 (2)N5—C9—C8—C70.10 (17)
N6—N5—C10—N3131.27 (13)N6—C7—C8—C90.24 (19)
C9—N5—C10—N173.53 (18)N3—N4—C6—C5−0.21 (18)
N6—N5—C10—N1−103.82 (13)N2—N1—C1—C2−0.57 (19)
C1—N1—C10—N373.6 (2)C10—N1—C1—C2−176.15 (15)
N2—N1—C10—N3−101.77 (14)N1—C1—C2—C30.2 (2)
C1—N1—C10—N5−51.5 (2)N1—N2—C3—C2−0.5 (2)
N2—N1—C10—N5133.13 (13)C1—C2—C3—N20.2 (2)
C1—N1—N2—C30.65 (17)N3—C4—C5—C6−0.28 (18)
C10—N1—N2—C3176.88 (13)N4—C6—C5—C40.3 (2)
C4—N3—N4—C60.02 (16)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C10—H10···N6i1.002.493.451 (2)161
C6—H6···N2ii0.952.513.432 (2)163
C1—H1···N4iii0.952.593.353 (2)138

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, y−1, z; (iii) −x+1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2828).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • McLauchlan, C. C., Varda, A. N. & Giles, J. R. (2004). Acta Cryst. E60, o1419–o1420.
  • Meulenaer, J. de & Tompa, H. (1965). Acta Cryst.19, 1014–1018.
  • Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd., Abingdon, United Kingdom.
  • Reger, D. L., Grattan, T. C., Brown, K. J., Little, C. A., Lamba, J. J. S., Rheingold, A. L. & Sommer, R. D. (2000). J. Organomet. Chem.607, 120–128.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography