PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 January 1; 65(Pt 1): o104.
Published online 2008 December 13. doi:  10.1107/S1600536808041883
PMCID: PMC2968028

rac-1-Acetyl-5-benzyl-2-thioxoimidazolidin-4-one

Abstract

In the title compound, C12H12N2O2S, the mol­ecules have a wing-like conformation, with a distance of 3.797 (2) Å between the centroids of the five- and six-membered rings. In the crystal structure, mol­ecules are linked by N—H(...)O hydrogen bonds, forming infinite one-dimensional zigzag chains, running along [001], with a C(4) graph-set motif.

Related literature

For related compounds, see: Seijas et al. (2006 [triangle], 2007 [triangle]); Delgado et al. (2007 [triangle]); Sulbaran et al. (2007 [triangle]). For racemization of amino acids, see: Yamada et al. (1983 [triangle]); Yoshioka (2007 [triangle]). For reference structural data, see: Allen et al. (2002 [triangle]). For hydrogen-bond motifs in graph-set notation, see Etter (1990 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o104-scheme1.jpg

Experimental

Crystal data

  • C12H12N2O2S
  • M r = 248.30
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o104-efi1.jpg
  • a = 11.696 (5) Å
  • b = 13.479 (6) Å
  • c = 7.767 (4) Å
  • β = 94.41 (1)°
  • V = 1220.8 (9) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.26 mm−1
  • T = 298 (2) K
  • 0.4 × 0.3 × 0.2 mm

Data collection

  • Rigaku AFC-7S Mercury diffractometer
  • Absorption correction: multi-scan (Jacobson, 1998 [triangle]) T min = 0.900, T max = 0.950
  • 12945 measured reflections
  • 2349 independent reflections
  • 2065 reflections with I > 2σ(I)
  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045
  • wR(F 2) = 0.124
  • S = 1.05
  • 2349 reflections
  • 156 parameters
  • H-atom parameters constrained
  • Δρmax = 0.24 e Å−3
  • Δρmin = −0.27 e Å−3

Data collection: CrystalClear (Rigaku, 2002 [triangle]); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2004 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 1999 [triangle]); software used to prepare material for publication: PLATON (Spek, 2003 [triangle]) and publCIF (Westrip, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808041883/cv2495sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808041883/cv2495Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by Consejo de Desarrollo Científico, Humanístico y Tecnológico de la Universidad de Los Andes, CDCHT-ULA (grants C-1616–08-A and C-1617–08-F) and Fondo Nacional de Ciencia, Tecnología e Innovación, FONACIT (grant LAB-97000821).

supplementary crystallographic information

Comment

In continuation of our study of N-carbamoyl, hydantoin and thiohydantoin derivatives of α-amino acids (Seijas et al., 2006, 2007; Delgado et al., 2007; Sulbaran et al., 2007), we report here the structure of the title compound (I) - the N-acetylthiohydantoin derivative of the α-amino acid L-phenylalanine.

Compound (I) (Fig. 1) crystallizes in a centrosymmetric space group, which implies that L-phenylalanine suffered an amino acid racemization produced by the use of acetic acid in the synthesis (Yamada et al. 1983; Yoshioka, 2007). All bond distances and angles are normal (Allen, 2002). The thiohydantoin ring is essentially planar with a maximum deviations of 0.023 (1) Å in C4 and -0.025 (2) Å in C5. The molecular structure and crystal packing of (I) are stabilized by intermolecular N3—H3···O4 (x, 1/2 - y, 1/2 + z) hydrogen bonds (Table 1), forming infinite one-dimentional zigzag chains that run along [001] direction, which can be described in graph-set notation as C(4) (Etter, 1990) (Figure 2).

Experimental

L-phenylalanine (3.4 mmol) and NH4SCN (3.4 mmol) was dissolved in a 9 ml acetic anhydride - 1 ml acetic acid mixture and transferred in a round-bottom flask. The mixture was warmed, with agitation, to 363 K over a period of 30 min. The resulting solution was cooled in a ice/water mixture and stored in a freezer overnight. The resulting white solid was filtered off and washed with cool water (m.p. 441–443 K). Crystal of (I) suitable for X-ray diffraction analysis were obtained by slow evaporation of a 1:1 ethanol-methanol solution.

Refinement

All H atoms were placed at calculated positions and treated using the riding model, with C—H distances of 0.93–0.98 A, and N—H distances of 0.86 A. The Uiso(H) parameters were fixed at 1.2Ueq(C, N) and 1.5Ueq(methyl).

Figures

Fig. 1.
The molecular structure of (I), showing the atomic numbering scheme. Displacement elipsoids are drawn at the 25% probability level and H atoms are shown as spheres of arbitrary radii.
Fig. 2.
A portion of the crystal packing viewed along the a-axis. Hydrogen bonds are marked with dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.

Crystal data

C12H12N2O2SF(000) = 520
Mr = 248.30Dx = 1.351 Mg m3
Monoclinic, P21/cMelting point = 441–443 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71070 Å
a = 11.696 (5) ÅCell parameters from 4020 reflections
b = 13.479 (6) Åθ = 2.4–27.8°
c = 7.767 (4) ŵ = 0.26 mm1
β = 94.41 (1)°T = 298 K
V = 1220.8 (9) Å3Block, colourless
Z = 40.4 × 0.3 × 0.2 mm

Data collection

Rigaku AFC-7S Mercury diffractometer2349 independent reflections
Radiation source: Normal-focus sealed tube2065 reflections with I > 2σ(I)
graphiteRint = 0.026
Detector resolution: 14.6306 pixels mm-1θmax = 28.0°, θmin = 2.3°
ω scansh = −13→13
Absorption correction: multi-scan (Jacobson, 1998)k = −15→15
Tmin = 0.900, Tmax = 0.950l = −9→6
12945 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.124w = 1/[σ2(Fo2) + (0.0616P)2 + 0.4929P] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2349 reflectionsΔρmax = 0.24 e Å3
156 parametersΔρmin = −0.27 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.013 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S20.84958 (5)0.53330 (4)0.61947 (7)0.0501 (2)
O20.88296 (18)0.61004 (12)0.0516 (2)0.0689 (5)
O40.87718 (14)0.24785 (10)0.23095 (18)0.0512 (4)
N10.85248 (14)0.50588 (12)0.26762 (19)0.0366 (4)
N30.86134 (14)0.37142 (11)0.42952 (19)0.0383 (4)
H30.86220.33430.51960.046*
C20.85359 (16)0.47307 (13)0.4365 (2)0.0356 (4)
C40.86755 (17)0.33477 (14)0.2669 (2)0.0378 (4)
C50.85594 (17)0.42208 (14)0.1459 (2)0.0385 (4)
H50.92370.42720.07960.046*
C60.86200 (19)0.60326 (15)0.2013 (3)0.0476 (5)
C70.8434 (2)0.69011 (16)0.3128 (3)0.0626 (7)
H7A0.84210.74950.24450.094*
H7B0.90460.69410.40240.094*
H7C0.77160.68290.36370.094*
C80.74690 (19)0.41292 (17)0.0231 (3)0.0487 (5)
H8A0.73750.4732−0.04460.058*
H8B0.75650.3585−0.05610.058*
C90.63988 (19)0.39550 (17)0.1147 (3)0.0496 (5)
C100.5823 (2)0.4733 (2)0.1867 (3)0.0634 (7)
H100.61010.53760.17860.076*
C110.4837 (3)0.4563 (3)0.2707 (4)0.0837 (10)
H110.44630.50920.31900.100*
C120.4967 (3)0.2862 (3)0.2141 (7)0.1180 (15)
H120.46810.22230.22370.142*
C130.4415 (3)0.3629 (4)0.2826 (5)0.1022 (12)
H130.37490.35180.33780.123*
C140.5954 (3)0.3015 (2)0.1296 (5)0.0825 (9)
H140.63190.24780.08260.099*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S20.0680 (4)0.0440 (4)0.0399 (3)−0.0022 (2)0.0150 (2)−0.0088 (2)
O20.1084 (15)0.0490 (10)0.0522 (10)0.0001 (9)0.0243 (9)0.0161 (7)
O40.0777 (11)0.0330 (8)0.0435 (8)0.0035 (7)0.0093 (7)−0.0038 (6)
N10.0462 (10)0.0304 (8)0.0341 (8)0.0014 (7)0.0091 (6)0.0021 (6)
N30.0531 (10)0.0312 (8)0.0312 (8)−0.0013 (7)0.0075 (6)0.0022 (6)
C20.0369 (10)0.0348 (10)0.0358 (10)−0.0015 (7)0.0081 (7)0.0009 (7)
C40.0439 (11)0.0342 (10)0.0356 (10)0.0009 (8)0.0067 (7)−0.0014 (7)
C50.0491 (12)0.0344 (10)0.0335 (10)0.0021 (8)0.0118 (8)0.0006 (7)
C60.0571 (14)0.0352 (11)0.0516 (13)0.0004 (9)0.0110 (10)0.0083 (9)
C70.0881 (19)0.0330 (12)0.0679 (16)0.0020 (11)0.0140 (13)0.0055 (10)
C80.0588 (14)0.0552 (13)0.0319 (10)0.0042 (10)0.0029 (9)−0.0021 (9)
C90.0471 (13)0.0623 (14)0.0385 (11)0.0045 (10)−0.0029 (8)−0.0030 (9)
C100.0547 (15)0.0767 (19)0.0582 (15)0.0128 (12)−0.0001 (11)−0.0111 (12)
C110.0587 (18)0.126 (3)0.0657 (18)0.0246 (18)0.0017 (13)−0.0179 (18)
C120.070 (2)0.102 (3)0.186 (4)−0.022 (2)0.034 (3)0.016 (3)
C130.060 (2)0.144 (4)0.106 (3)0.000 (2)0.0263 (18)0.009 (2)
C140.0598 (17)0.0713 (19)0.118 (3)−0.0079 (14)0.0165 (16)−0.0138 (17)

Geometric parameters (Å, °)

S2—C21.6402 (19)C7—H7C0.9600
O2—C61.210 (3)C8—C91.505 (3)
O4—C41.212 (2)C8—H8A0.9700
N1—C21.384 (2)C8—H8B0.9700
N1—C61.418 (2)C9—C141.378 (4)
N1—C51.476 (2)C9—C101.387 (3)
N3—C41.363 (2)C10—C111.387 (4)
N3—C21.374 (2)C10—H100.9300
N3—H30.8600C11—C131.358 (5)
C4—C51.506 (3)C11—H110.9300
C5—C81.537 (3)C12—C131.349 (5)
C5—H50.9800C12—C141.386 (5)
C6—C71.482 (3)C12—H120.9300
C7—H7A0.9600C13—H130.9300
C7—H7B0.9600C14—H140.9300
C2—N1—C6130.19 (17)H7B—C7—H7C109.5
C2—N1—C5111.36 (15)C9—C8—C5113.59 (16)
C6—N1—C5117.97 (16)C9—C8—H8A108.8
C4—N3—C2113.97 (15)C5—C8—H8A108.8
C4—N3—H3123.0C9—C8—H8B108.8
C2—N3—H3123.0C5—C8—H8B108.8
N3—C2—N1106.08 (15)H8A—C8—H8B107.7
N3—C2—S2122.29 (14)C14—C9—C10117.5 (2)
N1—C2—S2131.63 (15)C14—C9—C8121.1 (2)
O4—C4—N3125.20 (18)C10—C9—C8121.3 (2)
O4—C4—C5128.11 (17)C9—C10—C11120.9 (3)
N3—C4—C5106.65 (16)C9—C10—H10119.6
N1—C5—C4101.76 (14)C11—C10—H10119.6
N1—C5—C8113.36 (16)C13—C11—C10120.3 (3)
C4—C5—C8110.80 (17)C13—C11—H11119.9
N1—C5—H5110.2C10—C11—H11119.9
C4—C5—H5110.2C13—C12—C14120.9 (4)
C8—C5—H5110.2C13—C12—H12119.5
O2—C6—N1116.53 (19)C14—C12—H12119.5
O2—C6—C7123.47 (19)C12—C13—C11119.8 (3)
N1—C6—C7119.98 (18)C12—C13—H13120.1
C6—C7—H7A109.5C11—C13—H13120.1
C6—C7—H7B109.5C12—C14—C9120.7 (3)
H7A—C7—H7B109.5C12—C14—H14119.7
C6—C7—H7C109.5C9—C14—H14119.7
H7A—C7—H7C109.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N3—H3···O4i0.861.982.834 (2)175

Symmetry codes: (i) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2495).

References

  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Delgado, G. E., Mora, A. J., Uzcátegui, J., Bahsas, A. & Briceño, A. (2007). Acta Cryst. C63, o448–o450. [PubMed]
  • Etter, M. C. (1990). Acc. Chem. Res.23, 120–126.
  • Jacobson, R. (1998). Private communication to Rigaku Corporation, Tokyo, Japan.
  • Rigaku (2002). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2004). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  • Seijas, L. E., Delgado, G. E., Mora, A. J., Bahsas, A. & Briceño, A. (2007). Acta Cryst. C63, o303–o305. [PubMed]
  • Seijas, L. E., Delgado, G. E., Mora, A. J., Bahsas, A. & Uzcátegui, J. (2006). Av. Quím.1, 3–7.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Sulbaran, M. E., Delgado, G. E., Mora, A. J., Bahsas, A., Novoa de Armas, H. & Blaton, N. (2007). Acta Cryst. C63, o543–o545. [PubMed]
  • Westrip, S. P. (2009). publCIF. In preparation.
  • Yamada, S., Hongo, C., Yoshioka, R. & Chibata, I. (1983). J. Org. Chem.48, 843–846.
  • Yoshioka, R. (2007). Top. Curr. Chem.269, 83–132. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography