PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 January 1; 65(Pt 1): o102–o103.
Published online 2008 December 13. doi:  10.1107/S1600536808041093
PMCID: PMC2968027

3-Fluoro-N-(3-fluoro­benzo­yl)-N-(2-pyrid­yl)benzamide

Abstract

The title compound, C19H12F2N2O2, a 2:1 product of the reaction of 3-fluoro­benzoyl­chloride and 2-amino­pyridine crystallizes with a disordered 3-fluoro­benzene ring adopting two conformations [ratio of occupancies 0.959 (4):0.041 (4)]. In the crystal structure, there are no classical hydrogen bonds and inter­actions comprise C—H(...)O in the form 2(C—H)(...)O=C [with motif R 2 1(5)]; C—H(...)π(arene) inter­actions are also present.

Related literature

For background information, see: Donnelly et al. (2008 [triangle]); Gallagher et al. (2008 [triangle]); McMahon et al. (2008 [triangle]); Moody et al. (1998 [triangle]). For a description of the Cambridge Structural Database, see: Allen (2002 [triangle]). For the parent compound, 2-(dibenzoyl­amino)pyridine, see: Weng et al. (2006 [triangle]). For related structures, see: Usman et al. (2002a [triangle],b [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o102-scheme1.jpg

Experimental

Crystal data

  • C19H12F2N2O2
  • M r = 338.31
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o102-efi1.jpg
  • a = 5.4932 (4) Å
  • b = 8.1549 (5) Å
  • c = 17.9205 (15) Å
  • α = 78.081 (4)°
  • β = 89.588 (3)°
  • γ = 76.693 (3)°
  • V = 763.69 (10) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 150 (1) K
  • 0.34 × 0.30 × 0.12 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: multi-scan (SORTAV; Blessing, 1995 [triangle]) T min = 0.873, T max = 0.992
  • 5197 measured reflections
  • 3422 independent reflections
  • 1966 reflections with I > 2σ(I)
  • R int = 0.043

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057
  • wR(F 2) = 0.167
  • S = 1.04
  • 3422 reflections
  • 236 parameters
  • 5 restraints
  • H-atom parameters constrained
  • Δρmax = 0.26 e Å−3
  • Δρmin = −0.32 e Å−3

Data collection: KappaCCD Server Software (Nonius, 1997 [triangle]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]) and SORTX (McArdle, 1995 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXL97 and PREP8 (Ferguson, 1998 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808041093/tk2338sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808041093/tk2338Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

JFG thanks Dublin City University for grants in aid of undergraduate research. Thanks especially to Mr Damien McGuirk for providing excellent technical support in the undergraduate research laboratories.

supplementary crystallographic information

Comment

Our group is completing a structural systematic study of fluoro-N'-(pyridyl)benzamide isomers (Donnelly et al., 2008) and we are adding to our research with the analogous difluoro-N-(pyridyl)benzamide series (McMahon et al., 2008) (Scheme 1).

In the chemical synthesis of either the mono- or di-fluoro derivatives and when using the ortho-aminopyridine, two products can be isolated as either the 1:1 or 2:1 benzoyl:pyridine components, and with yields and ratios depending on the reaction conditions. We have reported the structure of the 1:1 derivative, 2,3-difluoro-N-(2-pyridyl)benzamide (Gallagher et al., 2008), and now report a 2:1 relative of this compound, namely 3-fluoro-N'-(3-fluorobenzoyl)-N'-(2-pyridinyl)benzamide (I) (Figs 1 & 2). The parent compound 2-(dibenzoylamino)pyridine has been reported previously (Weng et al., 2006) as well as the compounds N,N-dibenzoyl-4-chloroaniline and 4-acetyl-N,N-dibenzoylphenylamine (Usman et al., 2002a,b).

In the crystal structure of (I), there are no classical hydrogen bonds and the weaker interactions present consist of C—H···O and C—H···π(arene) contacts. An unusual (phenyl)C—H···C=O interaction arises between neighbouring molecules as (C24—H24/C25—H25)···O2=C2i [graph set R21(5)] with O···C distances of 3.062 (3) and 3.097 (3) Å (symmetry code: i = x - 1, y + 1, z), Table 1.

A search of the literature (Allen, 2002) reveals a structure exhibiting a comparable example of hydrogen bonding and is archived in the CSD (as XOXRIL). However, in this structure the interacting molecules are offset with respect to the C=O···C2 moiety in the aromatic C5N ring. A related search yielded POZWUW (Fig. 3) (Moody et al., 1998) and RINXUI which both have relatively symmetrical C=O···C2 distances similar to (I) and form chains along the b axis. In the POZWUW structure the C3/C4···O1ii distances are 3.013 (3) and 3.090 (3) Å, and similar to that in (I) (symmetry code: ii = x, y - 1, z) (Fig. 3).

A related search for C=O···C2 [in C6] yielded 6 compounds in the same range of C···O from 2.0–3.0 Å but most were disordered, with high R-factors and typically had the solvent benzene as the acceptor; these are listed as BARJUZ10, LAYDAQ, MERRIK, OGOPUV, SEDLET, XICFEV (Allen, 2002).

Experimental

Compound (I) was synthesized via standard condensation procedures and similar to the related syntheses reported previously (Donnelly et al., 2008; McMahon et al., 2008). Separation of the 1:1 and 2:1 derivatives was undertaken by using flash chromatography. Typical organic workup and washing gave the product (I) in modest yield of 25–35% as a 2:1 component of the mixture. Crystals suitable for X-ray diffraction were grown from CHCl3 as colourless blocks over a period of 1–2 weeks and gave a melting point of 401–406 K. The compounds gave clean 1H and 13C NMR spectra in CDC3 and infrared spectra (in CHCl3 solution, and as KBr disks).

For (I), m.p. 401–406 K (uncorrected). IR (νC=O cm-1): 1697(s, br), (CHCl3); 1695(s) (KBr).

Refinement

Molecule (I) crystallized in the triclinic system; space group P1 (No. 2) assumed and confirmed by the refinement and analysis. In the final stages of refinement it was observed that there was electron density consistent with a partial occupancy F atom in a position expected for a minor orientation (site) of the F33 atom position. This new site only necessitates rotation by 180° about the C2—C31 axis in a group that is not engaged in strong hydrogen bonding.

The minor F35 site was treated initially with isotropic displacement values and in the final refinement cycles was restrained by DFIX values to 1.350 (5) Å, SIMU restraints of 0.2 (F33, F35) and FLAT constraints of 0.1 with the {C31···C36} benzene ring. The final refinement gave site occupancy values of 0.959 (4):0.041 (4). As the major and minor sites for the C6 ring are essentially coincidental it was decided to retain the major orientation with 100% occupancy for use with the restraints.

Refinement and disorder analysis: (WGHT, R-factor and residual electron density).

Refinement without disorder gives an R-factor of 0.058 WGHT = 0.0856 0.018, R = 0.058 and +0.40/-0.30. Refinement with F33 at variable occupancy changes site from 1.000 to 0.937. WGHT = 0.082 0.018, R = 0.057 and +0.39/-0.30. Final refinement and treatment of disorder gives an R-factor of 0.057: WGHT = 0.0816 0, R = 0.057 and +0.26/-0.32 [Inclusion of the minor site at F35 using DFIX/SIMU/FLAT restraints].

H atoms attached to C atoms were treated as riding with C—H = 0.95 Å, and with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
A view of (I) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. The disordered F33/F35 sites are depicted for clarity.
Fig. 2.
A view of the C—H···O interactions in the crystal structure of (I).
Fig. 3.
A view of the 2x(C—H)···O=C interaction in POZWUW crystal structure with atoms drawn as their van der Waals spheres (Moody et al., 1998).
Fig. 4.
The CSD instructions and search criteria for the 2x(C—H)···O=C interaction in related structures.

Crystal data

C19H12F2N2O2Z = 2
Mr = 338.31F(000) = 348
Triclinic, P1Dx = 1.471 Mg m3
Hall symbol: -P 1Melting point: 403 K
a = 5.4932 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.1549 (5) ÅCell parameters from 2910 reflections
c = 17.9205 (15) Åθ = 2.6–27.5°
α = 78.081 (4)°µ = 0.11 mm1
β = 89.588 (3)°T = 150 K
γ = 76.693 (3)°Block, colourless
V = 763.69 (10) Å30.34 × 0.30 × 0.12 mm

Data collection

Nonius KappaCCD diffractometer3422 independent reflections
Radiation source: fine-focus sealed X-ray tube1966 reflections with I > 2σ(I)
graphiteRint = 0.043
[var phi], and ω scans with κ offsetsθmax = 27.5°, θmin = 2.6°
Absorption correction: multi-scan (SORTAV; Blessing, 1995)h = −7→7
Tmin = 0.873, Tmax = 0.992k = −10→10
5197 measured reflectionsl = −20→23

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.167H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.0816P)2] where P = (Fo2 + 2Fc2)/3
3422 reflections(Δ/σ)max < 0.001
236 parametersΔρmax = 0.26 e Å3
5 restraintsΔρmin = −0.32 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
F131.4634 (3)0.23528 (17)0.51411 (9)0.0438 (4)
F330.7405 (3)0.6582 (2)−0.04453 (9)0.0534 (6)0.959 (4)
F350.085 (3)0.975 (3)0.064 (3)0.072 (17)0.041 (4)
O11.0215 (3)0.83326 (19)0.37748 (10)0.0389 (5)
C10.9639 (4)0.7323 (3)0.34430 (14)0.0268 (6)
C111.0136 (4)0.5439 (3)0.37798 (13)0.0247 (5)
C121.2170 (4)0.4755 (3)0.42993 (14)0.0283 (6)
C131.2672 (4)0.3023 (3)0.46246 (14)0.0302 (6)
C141.1272 (5)0.1930 (3)0.44586 (14)0.0316 (6)
C150.9220 (5)0.2637 (3)0.39557 (14)0.0310 (6)
C160.8640 (4)0.4374 (3)0.36223 (14)0.0285 (6)
N10.8296 (4)0.7932 (2)0.27278 (11)0.0252 (5)
C210.7380 (4)0.9785 (3)0.25150 (13)0.0232 (5)
N220.8718 (4)1.0596 (2)0.20067 (11)0.0282 (5)
C230.7874 (4)1.2313 (3)0.17910 (14)0.0293 (6)
C240.5739 (4)1.3220 (3)0.20586 (14)0.0288 (6)
C250.4409 (4)1.2343 (3)0.25976 (14)0.0282 (6)
C260.5261 (4)1.0580 (3)0.28380 (14)0.0279 (6)
O21.0823 (3)0.5907 (2)0.21749 (10)0.0357 (5)
C20.8926 (4)0.7035 (3)0.21272 (13)0.0259 (5)
C310.7138 (4)0.7490 (3)0.14525 (13)0.0256 (5)
C320.8076 (5)0.6859 (3)0.08106 (14)0.0287 (6)
C330.6501 (5)0.7166 (3)0.01795 (15)0.0361 (6)
C340.4039 (5)0.8066 (3)0.01530 (16)0.0381 (7)
C350.3124 (5)0.8666 (3)0.07875 (15)0.0345 (6)
C360.4653 (4)0.8371 (3)0.14401 (14)0.0279 (6)
H121.31850.54660.44260.034*
H141.17010.07330.46820.038*
H150.82000.19210.38380.037*
H160.72120.48440.32840.034*
H230.88011.29330.14350.035*
H240.51831.44290.18770.035*
H250.29431.29420.27970.034*
H260.44180.99370.32130.033*
H320.97640.62320.08120.034*
H330.71340.6742−0.02560.043*0.041 (4)
H340.29980.8267−0.02930.046*
H350.14310.92880.07800.041*0.959 (4)
H360.39930.87750.18780.034*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
F130.0402 (9)0.0387 (8)0.0439 (10)−0.0050 (7)−0.0157 (8)0.0068 (7)
F330.0543 (12)0.0759 (13)0.0333 (11)−0.0060 (9)0.0036 (8)−0.0295 (9)
F350.07 (3)0.06 (3)0.07 (4)−0.02 (3)−0.02 (3)0.01 (2)
O10.0534 (12)0.0265 (9)0.0372 (11)−0.0090 (9)−0.0134 (9)−0.0078 (8)
C10.0250 (13)0.0276 (12)0.0256 (14)−0.0026 (11)−0.0028 (10)−0.0049 (11)
C110.0268 (13)0.0234 (11)0.0226 (13)−0.0030 (10)0.0023 (10)−0.0054 (10)
C120.0295 (13)0.0268 (12)0.0292 (14)−0.0068 (11)−0.0019 (11)−0.0074 (11)
C130.0266 (13)0.0286 (13)0.0302 (15)−0.0014 (10)−0.0038 (11)0.0000 (11)
C140.0370 (15)0.0238 (12)0.0309 (15)−0.0054 (11)0.0038 (12)−0.0008 (11)
C150.0361 (14)0.0275 (13)0.0309 (15)−0.0112 (11)0.0012 (12)−0.0052 (11)
C160.0291 (13)0.0313 (13)0.0248 (14)−0.0048 (11)−0.0019 (11)−0.0072 (11)
N10.0300 (11)0.0192 (9)0.0245 (11)−0.0015 (8)−0.0025 (9)−0.0045 (8)
C210.0257 (13)0.0181 (11)0.0240 (13)−0.0001 (10)−0.0039 (10)−0.0056 (9)
N220.0295 (11)0.0240 (10)0.0310 (12)−0.0053 (9)0.0021 (9)−0.0064 (9)
C230.0322 (14)0.0247 (12)0.0308 (15)−0.0083 (11)0.0012 (11)−0.0033 (11)
C240.0338 (14)0.0187 (11)0.0318 (15)−0.0026 (10)−0.0039 (11)−0.0046 (10)
C250.0304 (13)0.0245 (12)0.0292 (14)−0.0027 (10)−0.0001 (11)−0.0086 (10)
C260.0302 (13)0.0271 (12)0.0267 (14)−0.0074 (11)0.0031 (11)−0.0057 (10)
O20.0382 (10)0.0295 (9)0.0310 (11)0.0069 (8)0.0042 (8)−0.0038 (8)
C20.0322 (14)0.0182 (11)0.0261 (14)−0.0032 (10)0.0054 (11)−0.0050 (10)
C310.0322 (13)0.0203 (11)0.0250 (14)−0.0082 (10)0.0020 (11)−0.0044 (10)
C320.0302 (13)0.0240 (12)0.0318 (15)−0.0063 (11)0.0036 (11)−0.0058 (11)
C330.0456 (17)0.0386 (14)0.0284 (15)−0.0139 (13)0.0076 (13)−0.0127 (12)
C340.0413 (16)0.0445 (15)0.0321 (16)−0.0144 (13)−0.0033 (13)−0.0111 (13)
C350.0316 (14)0.0329 (14)0.0400 (17)−0.0085 (12)−0.0006 (12)−0.0090 (12)
C360.0306 (14)0.0257 (12)0.0299 (15)−0.0082 (11)0.0024 (11)−0.0092 (11)

Geometric parameters (Å, °)

F13—C131.361 (3)C25—C261.381 (3)
F33—C331.353 (3)C31—C321.402 (3)
F35—C351.347 (5)C31—C361.387 (3)
O1—C11.207 (2)C32—C331.374 (3)
C1—N11.420 (3)C33—C341.378 (4)
O2—C21.211 (3)C34—C351.376 (4)
C2—C311.493 (3)C35—C361.391 (3)
N1—C21.420 (3)C12—H120.9500
N1—C211.448 (3)C14—H140.9500
C1—C111.492 (3)C15—H150.9500
C11—C121.393 (3)C16—H160.9500
C11—C161.394 (3)C23—H230.9500
C12—C131.377 (3)C24—H240.9500
C13—C141.379 (3)C25—H250.9500
C14—C151.384 (3)C26—H260.9500
C15—C161.382 (3)C32—H320.9500
C21—N221.331 (3)C33—H330.9500
C21—C261.382 (3)C34—H340.9500
N22—C231.344 (3)C35—H350.9500
C23—C241.375 (3)C36—H360.9500
C24—C251.387 (3)
O1—C1—N1119.86 (19)C32—C33—C34122.6 (2)
O1—C1—C11122.3 (2)C35—C34—C33118.5 (2)
N1—C1—C11117.67 (18)C34—C35—C36120.7 (2)
C12—C11—C16119.5 (2)C31—C36—C35120.1 (2)
C12—C11—C1116.76 (18)C13—C12—H12120.9
C16—C11—C1123.7 (2)C11—C12—H12120.9
C13—C12—C11118.3 (2)C13—C14—H14121.1
F13—C13—C12118.5 (2)C15—C14—H14121.1
F13—C13—C14118.2 (2)C16—C15—H15119.6
C12—C13—C14123.3 (2)C14—C15—H15119.6
C13—C14—C15117.7 (2)C15—C16—H16119.8
C16—C15—C14120.7 (2)C11—C16—H16119.8
C15—C16—C11120.4 (2)N22—C23—H23118.3
C1—N1—C2120.05 (18)C24—C23—H23118.3
C1—N1—C21114.85 (17)C23—C24—H24120.5
C2—N1—C21117.18 (18)C25—C24—H24120.5
N22—C21—C26124.97 (19)C26—C25—H25120.7
N22—C21—N1115.2 (2)C24—C25—H25120.7
C26—C21—N1119.8 (2)C25—C26—H26121.1
C21—N22—C23116.2 (2)C21—C26—H26121.1
N22—C23—C24123.4 (2)C33—C32—H32120.7
C23—C24—C25119.0 (2)C31—C32—H32120.7
C26—C25—C24118.6 (2)C32—C33—H33118.7
C25—C26—C21117.7 (2)C34—C33—H33118.7
O2—C2—N1120.7 (2)C35—C34—H34120.8
O2—C2—C31121.5 (2)C33—C34—H34120.8
N1—C2—C31117.8 (2)C34—C35—H35119.7
C36—C31—C32119.5 (2)C36—C35—H35119.7
C36—C31—C2124.9 (2)C31—C36—H36119.9
C32—C31—C2115.4 (2)C35—C36—H36119.9
C33—C32—C31118.6 (2)
O1—C1—C11—C12−27.9 (3)N1—C21—N22—C23178.84 (18)
N1—C1—C11—C12156.2 (2)C21—N22—C23—C24−1.0 (3)
O1—C1—C11—C16149.8 (2)N22—C23—C24—C252.1 (3)
N1—C1—C11—C16−26.1 (3)C23—C24—C25—C26−1.0 (3)
C16—C11—C12—C131.8 (4)C24—C25—C26—C21−1.1 (3)
C1—C11—C12—C13179.6 (2)N22—C21—C26—C252.3 (3)
C11—C12—C13—F13−179.0 (2)N1—C21—C26—C25−177.79 (18)
C11—C12—C13—C140.4 (4)C1—N1—C2—O2−11.0 (3)
F13—C13—C14—C15177.5 (2)C21—N1—C2—O2136.5 (2)
C12—C13—C14—C15−2.0 (4)C1—N1—C2—C31167.05 (19)
C13—C14—C15—C161.3 (4)C21—N1—C2—C31−45.5 (3)
C14—C15—C16—C110.9 (4)O2—C2—C31—C36160.4 (2)
C12—C11—C16—C15−2.5 (4)N1—C2—C31—C36−17.6 (3)
C1—C11—C16—C15179.9 (2)O2—C2—C31—C32−15.4 (3)
O1—C1—N1—C2138.7 (2)N1—C2—C31—C32166.55 (19)
C11—C1—N1—C2−45.3 (3)C36—C31—C32—C331.3 (3)
O1—C1—N1—C21−9.4 (3)C2—C31—C32—C33177.3 (2)
C11—C1—N1—C21166.5 (2)C31—C32—C33—C34−0.1 (3)
C1—N1—C21—N22101.8 (2)C32—C33—C34—C35−0.5 (4)
C2—N1—C21—N22−47.3 (3)C33—C34—C35—C360.1 (4)
C1—N1—C21—C26−78.1 (3)C32—C31—C36—C35−1.7 (3)
C2—N1—C21—C26132.8 (2)C2—C31—C36—C35−177.4 (2)
C26—C21—N22—C23−1.3 (3)C34—C35—C36—C311.1 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C24—H24···O2i0.952.533.097 (3)119
C25—H25···O2i0.952.463.063 (3)121
C25—H25···Cg1i0.952.793.606 (3)145

Symmetry codes: (i) x−1, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2338).

References

  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [PubMed]
  • Donnelly, K., Gallagher, J. F. & Lough, A. J. (2008). Acta Cryst. C64, o335–o340. [PubMed]
  • Ferguson, G. (1998). PREP8 University of Guelph, Canada.
  • Gallagher, J. F., McMahon, J., Anderson, F. P. & Lough, A. J. (2008). Acta Cryst. E64, o2394. [PMC free article] [PubMed]
  • McArdle, P. (1995). J. Appl. Cryst.28, 65.
  • McMahon, J., Anderson, F. P., Gallagher, J. F. & Lough, A. J. (2008). Acta Cryst. C64, o493–o497. [PubMed]
  • Moody, C. J., Miah, S., Slawin, A. M. Z., Mansfield, D. J. & Richards, I. C. (1998). Tetrahedron, 54, 9689–9700.
  • Nonius (1997). KappaCCD Server Software Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr. & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Usman, A., Razak, I. A., Fun, H.-K., Chantrapromma, S., Tian, J.-Z., Zhang, Y. & Xu, J.-H. (2002a). Acta Cryst. E58, o357–o358.
  • Usman, A., Razak, I. A., Fun, H.-K., Chantrapromma, S., Tian, J.-Z., Zhang, Y. & Xu, J.-H. (2002b). Acta Cryst. E58, o377–o379.
  • Weng, Y.-B., Wang, J.-K. & Wang, Y.-F. (2006). Acta Cryst. E62, o1868–o1869.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography