PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 January 1; 65(Pt 1): m124.
Published online 2008 December 24. doi:  10.1107/S1600536808043109
PMCID: PMC2968024

Bis{4-[(4H-1,2,4-triazol-4-yl)iminomethyl]pyridinium} diaquapentanitratocerate(III)

Abstract

The asymmetric unit of the title compound, (C8H8N5)2[Ce(NO3)5(H2O)2], contains one independent protonated 4-pyridyl­methyl­eneamino-1,2,4-triazole cation and half of a centrosymmetric [Ce(NO3)5(H2O)2]2− anion. The Ce atom coordinated by five NO3 anions and two water mol­ecules, exhibiting a distorted 10-coordination. In the crystal structure, inter­molecular O—H(...)N and N—H(...)O hydrogen bonds result in the formation of a supramolecular structure.

Related literature

For related compounds based on 4-amido-1,2,4-triazoles Schiff base ligands, see: Drabent et al. (2003 [triangle], 2004 [triangle]); Wang et al. (2006 [triangle]). For the preparation of the ligand, see: Colautti et al. (1971 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m124-scheme1.jpg

Experimental

Crystal data

  • (C8H8N5)2[Ce(NO3)5(H2O)2]
  • M r = 834.59
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m124-efi1.jpg
  • a = 10.322 (4) Å
  • b = 16.126 (6) Å
  • c = 17.595 (7) Å
  • β = 100.107 (4)°
  • V = 2883.2 (19) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.69 mm−1
  • T = 293 (2) K
  • 0.20 × 0.18 × 0.15 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.682, T max = 0.781
  • 5464 measured reflections
  • 2374 independent reflections
  • 2164 reflections with I > 2σ(I)
  • R int = 0.039

Refinement

  • R[F 2 > 2σ(F 2)] = 0.024
  • wR(F 2) = 0.051
  • S = 1.02
  • 2374 reflections
  • 231 parameters
  • 3 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.47 e Å−3
  • Δρmin = −0.39 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I. DOI: 10.1107/S1600536808043109/wk2094sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808043109/wk2094Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge financial support from the Innovation Program for College Students of Central South University (grant No. 081053308).

supplementary crystallographic information

Comment

In recent decades, metal coordination polymers containing 1,2,4-triazoles and their derivatives have been studied widely due to their versatile bridging modes with metal ions. Relatively few structurally characterized compounds based on 4-amido-1,2,4-triazoles Schiff base ligands have been reported (Drabent et al., 2004 and 2003; Wang et al., 2006) and these compounds exhibit dinuclear and tetranuclear structures. In this work, 4-Pyridylmethyleneamino-1,2,4-triazole coordinated with metal cerium is shown to generate a new coordination compound and its crystal structure reported.

As depicted in Fig.1, the Ce ion in this complex is ligated by eight oxygen atoms from five NO3- anions and two from H2O molecules. And three NO3- anions are bound to Ce ion in bidentate fashion, while the other two in monodentate one. The nitrogen atoms of Schiff base ligand are not involved in the coordination to the Ce center as we supposed. The [Ce(NO3)5(H2O)]2- unit and the ligands are linked through the O—H···N and N—H···O hydrogen bonds, forming a three dimensional network.

Experimental

The ligand was prepared according to the reported literature (Colautti et al., 1971). The ligand (0.1 mmol, 0.017 g) and (NH4)2Ce(NO3)6 (0.1 mmol, 0.055 g) were mixed in acetonitrile and methanol of 1:1. After stirring at room temperature for four hours, the yellow solution was filtered and evaporated at room temperature. A few days later the red block crystals were obtained.

Refinement

All of the non-hydrogen atoms were refined with anisotropic thermal displacement parameters. The hydrogen atoms on the water coordinated to the Ce atom were located in the difference Fourier, restraints applied to distance and angles and then refined. The positions of other hydrogen atoms were fixed geometrically at calculated distances and allowed to ride on the parent non-hydrogen atoms.

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. [symmetry codes: (A) 1 - x, y, 0.5 - z.]
Fig. 2.
A packing diagram of the title compound along a axis. The dash lines indicate hydrogen bonding.

Crystal data

(C8H8N5)2[Ce(NO3)5(H2O)2]F(000) = 1660
Mr = 834.59Dx = 1.923 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 10.322 (4) ÅCell parameters from 4413 reflections
b = 16.126 (6) Åθ = 2.4–27.9°
c = 17.595 (7) ŵ = 1.69 mm1
β = 100.107 (4)°T = 293 K
V = 2883.2 (19) Å3Block, red
Z = 40.2 × 0.18 × 0.15 mm

Data collection

Bruker SMART CCD area-detector diffractometer2374 independent reflections
Radiation source: fine-focus sealed tube2164 reflections with I > 2σ(I)
graphiteRint = 0.039
[var phi] & ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 2000)h = −8→12
Tmin = 0.682, Tmax = 0.781k = −19→17
5464 measured reflectionsl = −20→20

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: geom, H2O from difmap
wR(F2) = 0.051H atoms treated by a mixture of independent and constrained refinement
S = 1.02w = 1/[σ2(Fo2) + (0.0252P)2] where P = (Fo2 + 2Fc2)/3
2374 reflections(Δ/σ)max = 0.001
231 parametersΔρmax = 0.47 e Å3
3 restraintsΔρmin = −0.39 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ce10.50000.326614 (13)0.25000.03115 (9)
O10.50000.0598 (2)0.25000.0705 (10)
O20.4319 (2)0.17726 (13)0.28901 (13)0.0562 (6)
O30.1789 (3)0.2766 (2)0.29302 (17)0.1053 (11)
O40.2177 (3)0.27312 (16)0.41595 (15)0.0779 (8)
O50.3593 (2)0.32656 (13)0.35615 (12)0.0503 (5)
O60.7035 (2)0.54285 (14)0.34535 (13)0.0652 (7)
O70.53719 (19)0.45902 (12)0.33599 (10)0.0453 (5)
O80.70260 (19)0.42680 (12)0.28267 (11)0.0448 (5)
OW10.6436 (2)0.27739 (13)0.37050 (11)0.0416 (5)
HW1A0.7155 (19)0.3003 (18)0.3907 (15)0.065 (11)*
HW1B0.617 (3)0.2462 (16)0.4032 (13)0.063 (11)*
N10.50000.1364 (2)0.25000.0469 (9)
N20.2502 (3)0.29172 (15)0.35287 (16)0.0478 (6)
N30.6495 (2)0.47807 (15)0.32205 (12)0.0411 (6)
N41.5004 (3)0.66662 (14)0.40465 (18)0.0529 (7)
H4B1.56420.70070.40360.063*
N51.1739 (2)0.46981 (15)0.46894 (14)0.0462 (6)
N61.0647 (2)0.41729 (13)0.46749 (12)0.0372 (5)
N70.8835 (2)0.34651 (15)0.44223 (14)0.0457 (6)
N80.9425 (2)0.33038 (14)0.51796 (14)0.0434 (6)
C11.3894 (3)0.57624 (18)0.47348 (16)0.0440 (7)
H1A1.38020.55130.51990.053*
C21.4894 (3)0.6306 (2)0.47130 (18)0.0505 (8)
H2A1.54950.64240.51590.061*
C31.4172 (3)0.65205 (19)0.3402 (2)0.0524 (9)
H3A1.42720.67960.29510.063*
C41.3168 (3)0.59701 (18)0.33902 (16)0.0432 (7)
H4A1.25940.58580.29320.052*
C51.3012 (3)0.55803 (16)0.40681 (16)0.0368 (6)
C61.1905 (3)0.49910 (17)0.40619 (17)0.0457 (7)
H6A1.13560.48470.36040.055*
C70.9585 (3)0.39815 (18)0.41384 (17)0.0444 (7)
H7A0.94180.41900.36380.053*
C81.0501 (3)0.37400 (17)0.53134 (16)0.0417 (7)
H8A1.10850.37520.57800.050*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ce10.02878 (14)0.03952 (14)0.02512 (12)0.0000.00461 (9)0.000
O10.061 (2)0.043 (2)0.097 (3)0.000−0.015 (2)0.000
O20.0595 (15)0.0588 (14)0.0529 (13)−0.0164 (12)0.0170 (12)−0.0075 (11)
O30.113 (3)0.105 (2)0.077 (2)−0.0392 (19)−0.0401 (19)−0.0047 (17)
O40.086 (2)0.0829 (18)0.0775 (17)−0.0295 (15)0.0491 (16)−0.0101 (14)
O50.0423 (13)0.0648 (13)0.0487 (12)−0.0198 (11)0.0215 (10)−0.0070 (10)
O60.0732 (17)0.0559 (14)0.0640 (15)−0.0263 (13)0.0049 (13)−0.0135 (11)
O70.0409 (12)0.0547 (12)0.0417 (11)−0.0040 (10)0.0107 (10)−0.0061 (9)
O80.0358 (12)0.0544 (13)0.0450 (11)−0.0019 (10)0.0090 (10)−0.0021 (10)
OW10.0351 (12)0.0502 (12)0.0361 (11)−0.0123 (10)−0.0035 (10)0.0090 (10)
N10.036 (2)0.052 (2)0.047 (2)0.000−0.0087 (18)0.000
N20.0502 (18)0.0448 (14)0.0493 (16)−0.0041 (13)0.0110 (15)−0.0076 (12)
N30.0437 (15)0.0478 (15)0.0288 (12)−0.0036 (13)−0.0019 (11)0.0036 (11)
N40.0437 (16)0.0403 (15)0.080 (2)−0.0064 (12)0.0264 (16)−0.0004 (14)
N50.0458 (16)0.0478 (14)0.0457 (14)−0.0041 (12)0.0101 (12)0.0040 (12)
N60.0311 (13)0.0360 (12)0.0440 (14)−0.0087 (10)0.0053 (11)0.0049 (10)
N70.0367 (14)0.0475 (15)0.0499 (15)−0.0104 (12)−0.0008 (12)0.0030 (11)
N80.0391 (14)0.0423 (13)0.0472 (14)−0.0063 (12)0.0029 (12)0.0071 (11)
C10.0500 (19)0.0494 (18)0.0351 (15)−0.0024 (15)0.0143 (15)0.0040 (13)
C20.046 (2)0.0555 (19)0.0474 (19)−0.0051 (17)0.0011 (16)−0.0111 (16)
C30.055 (2)0.054 (2)0.056 (2)0.0130 (17)0.0306 (19)0.0225 (16)
C40.0393 (18)0.0563 (18)0.0335 (15)0.0104 (15)0.0046 (14)0.0039 (13)
C50.0314 (16)0.0354 (15)0.0449 (16)0.0002 (13)0.0105 (14)−0.0005 (12)
C60.0474 (19)0.0477 (18)0.0397 (17)0.0000 (15)0.0011 (15)−0.0002 (13)
C70.0393 (18)0.0503 (18)0.0412 (16)−0.0034 (15)0.0000 (15)0.0071 (14)
C80.0376 (17)0.0434 (17)0.0419 (16)−0.0050 (14)0.0013 (14)0.0052 (13)

Geometric parameters (Å, °)

Ce1—OW1i2.494 (2)N4—C21.331 (4)
Ce1—OW12.494 (2)N4—H4B0.8600
Ce1—O52.5590 (19)N5—C61.240 (3)
Ce1—O5i2.5590 (19)N5—N61.406 (3)
Ce1—O72.606 (2)N6—C71.350 (3)
Ce1—O7i2.606 (2)N6—C81.353 (3)
Ce1—O82.625 (2)N7—C71.296 (4)
Ce1—O8i2.625 (2)N7—N81.389 (3)
Ce1—O2i2.634 (2)N8—C81.301 (4)
Ce1—O22.634 (2)C1—C21.360 (4)
O1—N11.235 (5)C1—C51.384 (4)
O2—N11.253 (3)C1—H1A0.9300
O3—N21.199 (3)C2—H2A0.9300
O4—N21.251 (3)C3—C41.362 (4)
O5—N21.251 (3)C3—H3A0.9300
O6—N31.221 (3)C4—C51.383 (4)
O7—N31.264 (3)C4—H4A0.9300
O8—N31.264 (3)C5—C61.485 (4)
OW1—HW1A0.849 (10)C6—H6A0.9300
OW1—HW1B0.846 (10)C7—H7A0.9300
N1—O2i1.253 (3)C8—H8A0.9300
N4—C31.318 (4)
OW1i—Ce1—OW1142.88 (10)N3—O7—Ce197.65 (15)
OW1i—Ce1—O5106.96 (7)N3—O8—Ce196.72 (15)
OW1—Ce1—O573.02 (8)Ce1—OW1—HW1A124.3 (19)
OW1i—Ce1—O5i73.02 (8)Ce1—OW1—HW1B123.5 (19)
OW1—Ce1—O5i106.96 (7)HW1A—OW1—HW1B109.8 (16)
O5—Ce1—O5i179.96 (9)O1—N1—O2121.74 (18)
OW1i—Ce1—O7139.41 (7)O1—N1—O2i121.74 (18)
OW1—Ce1—O776.24 (7)O2—N1—O2i116.5 (4)
O5—Ce1—O767.74 (6)O3—N2—O5122.7 (3)
O5i—Ce1—O7112.29 (7)O3—N2—O4120.8 (3)
OW1i—Ce1—O7i76.24 (7)O5—N2—O4116.5 (3)
OW1—Ce1—O7i139.41 (7)O6—N3—O7121.6 (2)
O5—Ce1—O7i112.29 (7)O6—N3—O8121.8 (2)
O5i—Ce1—O7i67.74 (6)O7—N3—O8116.6 (2)
O7—Ce1—O7i69.97 (9)C3—N4—C2122.5 (3)
OW1i—Ce1—O8135.54 (6)C3—N4—H4B118.8
OW1—Ce1—O871.22 (7)C2—N4—H4B118.8
O5—Ce1—O8111.88 (6)C6—N5—N6116.7 (3)
O5i—Ce1—O868.15 (7)C7—N6—C8105.5 (2)
O7—Ce1—O848.56 (6)C7—N6—N5134.4 (2)
O7i—Ce1—O869.72 (6)C8—N6—N5120.1 (2)
OW1i—Ce1—O8i71.22 (6)C7—N7—N8107.4 (2)
OW1—Ce1—O8i135.54 (6)C8—N8—N7106.8 (2)
O5—Ce1—O8i68.15 (7)C2—C1—C5120.2 (3)
O5i—Ce1—O8i111.88 (6)C2—C1—H1A119.9
O7—Ce1—O8i69.72 (6)C5—C1—H1A119.9
O7i—Ce1—O8i48.56 (6)N4—C2—C1119.3 (3)
O8—Ce1—O8i104.04 (9)N4—C2—H2A120.4
OW1i—Ce1—O2i68.49 (7)C1—C2—H2A120.4
OW1—Ce1—O2i77.56 (7)N4—C3—C4120.5 (3)
O5—Ce1—O2i113.68 (7)N4—C3—H3A119.7
O5i—Ce1—O2i66.29 (7)C4—C3—H3A119.7
O7—Ce1—O2i151.86 (7)C3—C4—C5119.2 (3)
O7i—Ce1—O2i128.09 (7)C3—C4—H4A120.4
O8—Ce1—O2i112.40 (7)C5—C4—H4A120.4
O8i—Ce1—O2i138.12 (7)C4—C5—C1118.4 (3)
OW1i—Ce1—O277.56 (7)C4—C5—C6119.4 (3)
OW1—Ce1—O268.49 (7)C1—C5—C6122.2 (2)
O5—Ce1—O266.29 (7)N5—C6—C5117.6 (3)
O5i—Ce1—O2113.68 (7)N5—C6—H6A121.2
O7—Ce1—O2128.09 (7)C5—C6—H6A121.2
O7i—Ce1—O2151.86 (7)N7—C7—N6110.1 (2)
O8—Ce1—O2138.12 (7)N7—C7—H7A124.9
O8i—Ce1—O2112.40 (7)N6—C7—H7A124.9
O2i—Ce1—O247.72 (10)N8—C8—N6110.1 (3)
N1—O2—Ce197.88 (19)N8—C8—H8A124.9
N2—O5—Ce1126.02 (17)N6—C8—H8A124.9
OW1i—Ce1—O2—N172.13 (12)O7i—Ce1—O8—N376.92 (14)
OW1—Ce1—O2—N1−92.60 (13)O8i—Ce1—O8—N341.97 (12)
O5—Ce1—O2—N1−172.83 (15)O2i—Ce1—O8—N3−159.10 (14)
O5i—Ce1—O2—N17.16 (15)O2—Ce1—O8—N3−108.18 (15)
O7—Ce1—O2—N1−143.28 (10)Ce1—O2—N1—O1180.0
O7i—Ce1—O2—N193.88 (17)Ce1—O2—N1—O2i0.0
O8—Ce1—O2—N1−75.96 (15)Ce1—O5—N2—O3−24.5 (4)
O8i—Ce1—O2—N1135.54 (11)Ce1—O5—N2—O4155.8 (2)
O2i—Ce1—O2—N10.0Ce1—O7—N3—O6173.1 (2)
OW1i—Ce1—O5—N214.3 (2)Ce1—O7—N3—O8−6.7 (2)
OW1—Ce1—O5—N2−126.8 (2)Ce1—O8—N3—O6−173.2 (2)
O5i—Ce1—O5—N2−56 (100)Ce1—O8—N3—O76.6 (2)
O7—Ce1—O5—N2151.4 (2)C6—N5—N6—C7−10.8 (4)
O7i—Ce1—O5—N296.0 (2)C6—N5—N6—C8170.9 (3)
O8—Ce1—O5—N2172.2 (2)C7—N7—N8—C80.5 (3)
O8i—Ce1—O5—N275.3 (2)C3—N4—C2—C10.3 (5)
O2i—Ce1—O5—N2−59.2 (2)C5—C1—C2—N40.8 (5)
O2—Ce1—O5—N2−53.4 (2)C2—N4—C3—C4−1.6 (5)
OW1i—Ce1—O7—N3−111.82 (16)N4—C3—C4—C51.6 (4)
OW1—Ce1—O7—N380.77 (15)C3—C4—C5—C1−0.4 (4)
O5—Ce1—O7—N3157.79 (16)C3—C4—C5—C6178.9 (3)
O5i—Ce1—O7—N3−22.19 (16)C2—C1—C5—C4−0.8 (4)
O7i—Ce1—O7—N3−76.37 (14)C2—C1—C5—C6179.9 (3)
O8—Ce1—O7—N33.83 (13)N6—N5—C6—C5177.0 (2)
O8i—Ce1—O7—N3−128.32 (16)C4—C5—C6—N5−175.0 (3)
O2i—Ce1—O7—N358.9 (2)C1—C5—C6—N54.4 (4)
O2—Ce1—O7—N3128.58 (14)N8—N7—C7—N6−0.2 (3)
OW1i—Ce1—O8—N3119.31 (14)C8—N6—C7—N7−0.1 (3)
OW1—Ce1—O8—N3−91.83 (15)N5—N6—C7—N7−178.6 (3)
O5—Ce1—O8—N3−29.79 (16)N7—N8—C8—N6−0.6 (3)
O5i—Ce1—O8—N3150.24 (15)C7—N6—C8—N80.5 (3)
O7—Ce1—O8—N3−3.82 (13)N5—N6—C8—N8179.2 (2)

Symmetry codes: (i) −x+1, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
OW1—HW1A···N70.85 (2)1.96 (2)2.805 (3)176 (3)
OW1—HW1B···N8ii0.85 (2)2.03 (3)2.876 (3)178 (3)
N4—H4B···O4iii0.861.952.804 (3)172
N4—H4B···N2iii0.862.693.518 (4)162

Symmetry codes: (ii) −x+3/2, −y+1/2, −z+1; (iii) x+3/2, y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WK2094).

References

  • Bruker (2000). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Colautti, A., Ferlauto, R. J., Maurich, V., De Nardo, M., Nisi, C., Rubessa, F. & Runti, C. (1971). Chim. Ther.6, 367–379.
  • Drabent, K., Bialońska, A. & Ciunik, Z. (2004). Inorg. Chem. Commun.7, 224–227.
  • Drabent, K., Ciunik, Z. & Chmielewski, P. J. (2003). Eur. J. Inorg. Chem pp. 1548–1554.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, Y., Yi, L., Yang, X., Ding, B., Cheng, P., Liao, D.-Z. & Yan, S.-P. (2006). Inorg. Chem.45, 5822–5829. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography