PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 January 1; 65(Pt 1): m118.
Published online 2008 December 20. doi:  10.1107/S1600536808042682
PMCID: PMC2968019

Poly[diaqua-μ2-isonicotinato-μ2-oxalato-terbium(III)]

Abstract

In the crystal structure of the title complex, [Tb(C6H4NO2)(C2O4)(H2O)2]n, the TbIII ion is coordinated by two O atoms from two isonicotinate (inic) anions, four O atoms of two oxalate anions, and two water mol­ecules, displaying a distorted square-antiprismatic geometry. The TbIII ion, the inic anion and the water mol­ecules occupy general positions. One of the two crystallographically independent oxalate anions is located on a center of inversion, whereas the second is located on the twofold rotation axis. The carboxyl­ate groups of the inic and oxalate anions link the terbium metal centres into layers. These layers are connected by O—H(...)O and N—H(...)O hydrogen bonding into a three-dimensional network.

Related literature

For background, see: Eddaoudi et al. (2001 [triangle]); Rizk et al. (2005 [triangle]). An independent determination of this structure is reported in the preceeding paper, see: Song et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m118-scheme1.jpg

Experimental

Crystal data

  • [Tb(C6H4NO2)(C2O4)(H2O)2]
  • M r = 405.07
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m118-efi1.jpg
  • a = 17.7919 (18) Å
  • b = 9.9259 (10) Å
  • c = 12.9670 (13) Å
  • β = 112.4140 (10)°
  • V = 2117.0 (4) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 6.72 mm−1
  • T = 296 (2) K
  • 0.23 × 0.22 × 0.20 mm

Data collection

  • Bruker APEXII area-detector diffractometer
  • Absorption correction: multi-scan (APEX2; Bruker, 2004 [triangle]) T min = 0.241, T max = 0.272
  • 5243 measured reflections
  • 1907 independent reflections
  • 1674 reflections with I > 2σ(I)
  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.025
  • wR(F 2) = 0.063
  • S = 1.01
  • 1907 reflections
  • 163 parameters
  • 6 restraints
  • H-atom parameters constrained
  • Δρmax = 1.40 e Å−3
  • Δρmin = −1.31 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]) and SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808042682/nc2118sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808042682/nc2118Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge South China Normal University for supporting this work.

supplementary crystallographic information

Comment

The design, synthesis, characterization and properties of coordination networks formed by functionalized organic molecules or anionas as bridges between metal centers are of great interest(Rizk et al., 2005; Eddaoudi et al., 2001). As a building block, isonicotinic acid and oxalic acid are excellent candidates for the construction of such compounds. In our ongoing investigations in this field the title compound was prepared and structurally characterized.

In the crystal structure of the title compound each TbIII centre is coordinated by six oxygen atoms from two symmetry related inic anions, two crystallographically independent oxalate anions and two crystallographically independent water molecules within a distorted bicapped trigonal prismatic geometry (Fig. 1) . The TbIII ions are linked by the inic and oxalate anions into layers, which are parallel to the b-c-plane (Fig. 2). Tb···Tb separations amount to 6.177 (4) and 5.047 (5) Å, respectively. These layers are connected via O—H···O and N—H···O hydrogen bonding between the water H atoms and the inic and one of the two crystallographically independent oxalate anions into three-dimensional network (Table 1).

Experimental

A mixture of Tb4O7 (0.189 g; 0.25 mmol), isonicotinic acid (0.135 g; 1.5 mmol), oxalic acid(0.135 g; 1.5 mmol), water (10 mL) and HNO3 (0.385 mmol; 0.92g/ml) were stirred for 20 min and then sealed in a 20 mL Teflon-lined stainless-steel autoclave. The autoclave was heated to 433K for 3 days, and then cooled to room temperature at 5 K h-1. By this procedure colorless block-like crystals of the title compound were obtained.

Refinement

The Water H atoms were located in difference Fourier maps, their bond lengths were set to ideal values of O–H = 0.84 and finally they were refined isotropic using a riding model with Uiso(H) = 1.5 Ueq(O). C-H H atoms were placed at calculated positions and were treated as riding on the parent C atoms with C—H = 0.93 Å, and with Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.
Part of the crystal structure of the title compound with labelling and displacement ellipsoids drawn at the 30% probabbility level. Symmetry codes: (i)1.5-x, 0.5-y, 1-z; (ii)1.5-x, -0.5-y, 1-z; (iii)2-x, y, 1.5-z;
Fig. 2.
Crystal structure of the title compound with view along the c-axis.

Crystal data

[Tb(C6H4NO2)(C2O4)(H2O)2]F(000) = 1536
Mr = 405.07Dx = 2.542 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 17.7919 (18) ÅCell parameters from 2410 reflections
b = 9.9259 (10) Åθ = 2.4–27.7°
c = 12.9670 (13) ŵ = 6.72 mm1
β = 112.414 (1)°T = 296 K
V = 2117.0 (4) Å3Block, colourless
Z = 80.23 × 0.22 × 0.20 mm

Data collection

Bruker APEXII area-detector diffractometer1674 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
[var phi] and ω scansθmax = 25.2°, θmin = 2.4°
Absorption correction: multi-scan (APEX2; Bruker, 2004)h = −21→20
Tmin = 0.241, Tmax = 0.272k = −5→11
5243 measured reflectionsl = −15→15
1907 independent reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063H-atom parameters constrained
S = 1.01w = 1/[σ2(Fo2) + (0.0363P)2] where P = (Fo2 + 2Fc2)/3
1907 reflections(Δ/σ)max = 0.002
163 parametersΔρmax = 1.40 e Å3
6 restraintsΔρmin = −1.31 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Tb10.824056 (12)0.03238 (2)0.574780 (18)0.01553 (10)
O50.9618 (2)−0.0185 (4)0.6050 (3)0.0289 (9)
O20.6877 (2)0.0558 (4)0.4672 (3)0.0326 (9)
O30.8029 (2)−0.1491 (3)0.4403 (3)0.0239 (8)
C81.0149 (3)−0.0110 (5)0.7019 (4)0.0192 (11)
O61.0905 (2)−0.0055 (4)0.7291 (3)0.0272 (9)
C10.6278 (3)0.1294 (5)0.4198 (4)0.0215 (11)
C20.5442 (3)0.0692 (5)0.3902 (4)0.0172 (10)
C30.4756 (3)0.1501 (6)0.3627 (4)0.0264 (12)
H30.48000.24340.36180.032*
C60.5336 (3)−0.0690 (5)0.3874 (4)0.0241 (11)
H60.5781−0.12630.40500.029*
C40.4010 (3)0.0890 (6)0.3366 (4)0.0315 (13)
H40.35560.14380.32060.038*
C50.4563 (3)−0.1211 (5)0.3584 (5)0.0314 (13)
H50.4500−0.21420.35640.038*
N10.3903 (3)−0.0438 (5)0.3330 (4)0.0309 (11)
C70.7582 (3)−0.2447 (5)0.4457 (4)0.0201 (11)
O40.7261 (2)−0.3320 (3)0.3724 (3)0.0252 (8)
O10.6308 (2)0.2507 (4)0.3926 (3)0.0334 (9)
O1W0.75857 (19)0.1250 (3)0.6941 (3)0.0228 (8)
H1W0.71460.08770.68850.034*
H2W0.77940.15460.75980.034*
O2W0.8300 (2)0.1188 (4)0.4029 (3)0.0312 (9)
H3W0.85540.07940.36910.047*
H4W0.80510.18340.36310.047*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Tb10.01241 (14)0.01564 (15)0.01830 (15)−0.00225 (9)0.00558 (10)−0.00106 (9)
O50.0153 (18)0.048 (2)0.023 (2)0.0038 (17)0.0067 (16)−0.0063 (18)
O20.0144 (18)0.052 (3)0.028 (2)0.0001 (18)0.0045 (16)0.001 (2)
O30.0271 (19)0.0201 (18)0.0287 (19)−0.0097 (16)0.0153 (16)−0.0047 (16)
C80.017 (3)0.018 (2)0.019 (3)0.003 (2)0.003 (2)0.000 (2)
O60.0132 (18)0.040 (2)0.027 (2)0.0019 (16)0.0068 (16)−0.0024 (17)
C10.019 (3)0.031 (3)0.016 (2)−0.006 (2)0.009 (2)−0.007 (2)
C20.017 (2)0.021 (3)0.014 (2)−0.005 (2)0.0058 (19)0.001 (2)
C30.023 (3)0.028 (3)0.033 (3)0.004 (2)0.017 (2)0.008 (2)
C60.019 (3)0.022 (3)0.031 (3)−0.003 (2)0.010 (2)0.001 (2)
C40.019 (3)0.049 (4)0.030 (3)0.007 (3)0.014 (2)0.008 (3)
C50.036 (3)0.022 (3)0.040 (3)−0.013 (3)0.018 (3)−0.004 (3)
N10.023 (2)0.044 (3)0.026 (2)−0.009 (2)0.010 (2)−0.001 (2)
C70.019 (2)0.017 (3)0.023 (3)0.004 (2)0.006 (2)0.002 (2)
O40.033 (2)0.0225 (18)0.0218 (18)−0.0081 (16)0.0128 (16)−0.0050 (16)
O10.038 (2)0.027 (2)0.041 (2)−0.0189 (18)0.0211 (19)−0.0120 (19)
O1W0.0180 (17)0.027 (2)0.0260 (18)−0.0064 (15)0.0116 (15)−0.0071 (16)
O2W0.049 (2)0.024 (2)0.029 (2)0.0045 (18)0.0241 (18)0.0045 (17)

Geometric parameters (Å, °)

Tb1—O1i2.280 (3)C2—C31.389 (7)
Tb1—O22.303 (3)C3—C41.379 (7)
Tb1—O52.383 (3)C3—H30.9300
Tb1—O4ii2.385 (3)C6—C51.380 (7)
Tb1—O2W2.427 (3)C6—H60.9300
Tb1—O32.435 (3)C4—N11.330 (8)
Tb1—O6iii2.443 (4)C4—H40.9300
Tb1—O1W2.443 (3)C5—N11.335 (7)
O5—C81.254 (6)C5—H50.9300
O2—C11.244 (6)C7—O41.251 (6)
O3—C71.259 (6)C7—C7ii1.545 (10)
C8—O61.256 (6)O4—Tb1ii2.385 (3)
C8—C8iii1.529 (10)O1—Tb1i2.280 (3)
O6—Tb1iii2.443 (4)O1W—H1W0.8429
C1—O11.261 (6)O1W—H2W0.8420
C1—C21.511 (6)O2W—H3W0.8367
C2—C61.383 (7)O2W—H4W0.8365
O1i—Tb1—O2103.43 (14)O6—C8—C8iii116.0 (5)
O1i—Tb1—O584.39 (13)C8—O6—Tb1iii118.3 (3)
O2—Tb1—O5154.22 (14)O2—C1—O1125.4 (5)
O1i—Tb1—O4ii151.43 (12)O2—C1—C2117.9 (5)
O2—Tb1—O4ii80.50 (13)O1—C1—C2116.7 (5)
O5—Tb1—O4ii104.46 (13)C6—C2—C3118.0 (4)
O1i—Tb1—O2W72.60 (12)C6—C2—C1120.7 (4)
O2—Tb1—O2W79.21 (13)C3—C2—C1121.3 (5)
O5—Tb1—O2W79.88 (13)C4—C3—C2118.6 (5)
O4ii—Tb1—O2W135.25 (12)C4—C3—H3120.7
O1i—Tb1—O3141.11 (12)C2—C3—H3120.7
O2—Tb1—O378.56 (13)C5—C6—C2119.4 (5)
O5—Tb1—O380.16 (12)C5—C6—H6120.3
O4ii—Tb1—O367.43 (11)C2—C6—H6120.3
O2W—Tb1—O369.67 (11)N1—C4—C3123.8 (5)
O1i—Tb1—O6iii85.24 (13)N1—C4—H4118.1
O2—Tb1—O6iii137.67 (13)C3—C4—H4118.1
O5—Tb1—O6iii66.65 (12)N1—C5—C6122.9 (5)
O4ii—Tb1—O6iii74.06 (12)N1—C5—H5118.6
O2W—Tb1—O6iii141.48 (12)C6—C5—H5118.6
O3—Tb1—O6iii119.77 (12)C4—N1—C5117.4 (4)
O1i—Tb1—O1W75.34 (12)O4—C7—O3126.5 (5)
O2—Tb1—O1W72.48 (13)O4—C7—C7ii117.1 (5)
O5—Tb1—O1W133.16 (12)O3—C7—C7ii116.4 (5)
O4ii—Tb1—O1W79.12 (11)C7—O4—Tb1ii118.1 (3)
O2W—Tb1—O1W130.27 (12)C1—O1—Tb1i154.0 (4)
O3—Tb1—O1W138.71 (11)Tb1—O1W—H1W115.5
O6iii—Tb1—O1W69.91 (12)Tb1—O1W—H2W129.8
C8—O5—Tb1119.1 (3)H1W—O1W—H2W106.0
C1—O2—Tb1149.9 (4)Tb1—O2W—H3W122.5
C7—O3—Tb1116.5 (3)Tb1—O2W—H4W129.8
O5—C8—O6127.0 (5)H3W—O2W—H4W107.4
O5—C8—C8iii117.0 (5)

Symmetry codes: (i) −x+3/2, −y+1/2, −z+1; (ii) −x+3/2, −y−1/2, −z+1; (iii) −x+2, y, −z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H2W···O3iv0.842.222.992 (5)153
O2W—H4W···O1Wi0.842.193.003 (5)163
O1W—H1W···N1v0.841.832.661 (5)167
O2W—H3W···O6vi0.842.012.836 (5)172

Symmetry codes: (iv) x, −y, z+1/2; (i) −x+3/2, −y+1/2, −z+1; (v) −x+1, −y, −z+1; (vi) −x+2, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NC2118).

References

  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Eddaoudi, M., Moler, D. B., Li, H. L., Chen, B. L., Reineke, T. M., O’Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319-330. [PubMed]
  • Rizk, A. T., Kilner, C. A. & Halcrow, M. A. (2005). CrystEngComm, 7, 359–362.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Song, W.-D., Li, S.-J., Qin, P.-W. & Hu, S.-W. (2009). Acta Cryst. E65, m117. [PMC free article] [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography