PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 January 1; 65(Pt 1): m117.
Published online 2008 December 20. doi:  10.1107/S1600536808040518
PMCID: PMC2968018

Poly[diaqua-μ2-isonicotinato-μ2-oxalato-terbium(III)]

Abstract

In the crystal structure of the title complex, [Tb(C6H4NO2)(C2O4)(H2O)2]n, the TbIII cation is coordinated by four O atoms from two oxalate ligands, two O atoms from two isonicotinate ligands and two O atoms from water mol­ecules within a distorted square–anti­prismatic coordination. The TbIII cation, the isonicotinate anion and the two crystallographically independent water mol­ecules occupy general positions, whereas one of the two crystallographically independent oxalate anions is located on a center of inversion, and the second oxalate anion is located on a twofold rotation axis. The TbIII cations are linked by the oxalate and isonicotinate anions into layers, which are connected via inter­molecular hydrogen-bonding and π–π stacking [with centroid-to-centroid distances of 3.509 (2) and 3.343 (3) Å] inter­actions into a three-dimensional network.

Related literature

For general background on coordination polymers and open-framework materials, see: Yaghi et al. (1998 [triangle], 2003 [triangle]); Serre et al. (2004 [triangle]); James (2003 [triangle]). For related structures, see: Xia et al. (2004 [triangle]); Feng et al. (2003 [triangle]). An independent determination of this structure is reported in the following paper, see: Fang et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m117-scheme1.jpg

Experimental

Crystal data

  • [Tb(C6H4NO2)(C2O4)(H2O)2]
  • M r = 405.07
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m117-efi1.jpg
  • a = 17.7957 (6) Å
  • b = 9.9229 (4) Å
  • c = 12.9673 (5) Å
  • β = 112.407 (2)°
  • V = 2116.95 (14) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 6.72 mm−1
  • T = 273 (2) K
  • 0.36 × 0.30 × 0.24 mm

Data collection

  • Bruker APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.113, T max = 0.207
  • 7256 measured reflections
  • 1906 independent reflections
  • 1618 reflections with I > 2σ(I)
  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.023
  • wR(F 2) = 0.053
  • S = 0.91
  • 1906 reflections
  • 145 parameters
  • 6 restraints
  • H-atom parameters constrained
  • Δρmax = 0.52 e Å−3
  • Δρmin = −0.88 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808040518/nc2122sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808040518/nc2122Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge Guang Dong Ocean University for supporting this work.

supplementary crystallographic information

Comment

The use of multifunctional organic linker molecules in the preparation of coordination polymers and open-framework materials has led to the development of a rich field of chemistry (Yaghi et al., 1998, 2003; Serre et al., 2004; James, 2003) owing to the potential applications of these materials in catalysis, separation, gas storage and molecular recognition. In our own investigatins we used isonictinate and oxalate ligands for the preparation of new coordination polymers, because it has been found that both anions can act as multidentate ligands [Xia et al. (2004); Feng et al. (2003)] with versatile binding and coordination modes. During these investigations, single crystals of the title compound were obtained.

The TbIII centre in the title compound exhibits a distorted square-antiprismatic coordination geometry, defined by eight O atoms from two oxalate ligands, two O atom from two isonictinate ligands and two water molecules (Fig. 1). The oxalate and isonictinate ligands link the TbIII cations with Tb—Tb distances of 6.179 (2) Å, 6.183 (3) Å and 5.045 (2) Å, respectively, thus forming Tb-oxalate-isonictinate layers with the attached water that is pointing up and down (Fig. 2). The layers are connected into a three-dimensional network via inter/intramolecular O—H···O and O—H···N hydrogen bonding interactions (Table 1) involving the coordinated water molecules, the N atoms of isonictinate and the oxalate O atoms. They are also stabilized by π-π stacking interactions with centroid to centroid distances of 3.509 (2) Å and 3.343 (3) Å, respectively, among parellel pyridinium rings of neighboring complexes.

Experimental

A mixture of Tb2O3 (0.5 mmol, 0.175 g), sodium oxalate (1 mmol, 0.134 g), isonicotinic acid (1 mmol, 0.123 g) and H2O (10 ml) was placed in a 23 ml Teflon reactor, which was heated to 433 K for three days and then cooled to room temperature at a rate of 10 K h-1. The crystals obtained were washed with water and dryed in air.

Refinement

C-H H atoms were placed in calculated positions and were treated as riding on the parent C atoms with C—H = 0.93 Å, and with Uiso(H) = 1.2 Ueq(C). The O-H H atoms were located in difference Fourier maps and were refined with distance restraints of O–H = 0.84 Å and H···H = 1.39 Å, each within a standard deviation of 0.01 Å, and with Uiso(H) = 1.5 Ueq(O).

Figures

Fig. 1.
The structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level. [Symmetry codes: (i) 1 - x, y, 0.5 - z; (ii) 0.5 - x, 2.5 - y, -z; (iii) 0.5 - x, 1.5 - y, -z]
Fig. 2.
Crystal structure of the title compound with view onto the layers. The H atoms are not shown for clarity.

Crystal data

[Tb(C6H4NO2)(C2O4)(H2O)2]F(000) = 1536
Mr = 405.07Dx = 2.542 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 8000 reflections
a = 17.7957 (6) Åθ = 1.7–26.0°
b = 9.9229 (4) ŵ = 6.72 mm1
c = 12.9673 (5) ÅT = 273 K
β = 112.407 (2)°Block, colorless
V = 2116.95 (14) Å30.36 × 0.30 × 0.24 mm
Z = 8

Data collection

Bruker APEXII area-detector diffractometer1906 independent reflections
Radiation source: fine-focus sealed tube1618 reflections with I > 2σ(I)
graphiteRint = 0.034
[var phi] and ω scansθmax = 25.2°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −21→20
Tmin = 0.113, Tmax = 0.207k = −11→11
7256 measured reflectionsl = −15→15

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.053H-atom parameters constrained
S = 0.91w = 1/[σ2(Fo2) + (0.0299P)2 + 5.163P] where P = (Fo2 + 2Fc2)/3
1906 reflections(Δ/σ)max = 0.001
145 parametersΔρmax = 0.52 e Å3
6 restraintsΔρmin = −0.88 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Tb10.323989 (12)0.96756 (2)0.074846 (17)0.01399 (9)
O10.46185 (19)1.0185 (4)0.1051 (3)0.0274 (9)
O20.3030 (2)1.1497 (3)−0.0596 (3)0.0229 (8)
O50.3693 (2)0.7501 (4)0.1067 (3)0.0331 (9)
C10.2585 (3)1.2447 (5)−0.0542 (4)0.0172 (11)
C20.5146 (3)1.0111 (5)0.2013 (4)0.0172 (11)
C70.5237 (3)0.6498 (6)0.1361 (4)0.0231 (12)
H70.51900.74320.13480.028*
C80.3727 (3)0.6297 (6)0.0808 (4)0.0196 (11)
C30.4558 (3)0.5688 (5)0.1108 (3)0.0163 (11)
C60.5989 (3)0.5889 (7)0.1636 (4)0.0281 (13)
H60.64440.64390.18070.034*
C40.4671 (3)0.4306 (5)0.1135 (4)0.0220 (12)
H40.42280.37310.09610.026*
C50.54429 (8)0.37835 (15)0.14206 (11)0.0281 (13)
H50.55080.28530.14400.034*
N10.60972 (8)0.45622 (15)0.16691 (11)0.0279 (11)
O30.59033 (8)1.00505 (15)0.22872 (11)0.0229 (8)
O40.22609 (8)1.33232 (15)−0.12763 (11)0.0232 (8)
O60.31250 (8)0.55572 (15)0.03267 (11)0.0301 (9)
O1W0.25866 (8)0.87408 (15)0.19413 (11)0.0208 (8)
H1W0.21220.90300.18520.031*
H2W0.28330.86220.26300.031*
O2W0.33025 (8)0.88114 (15)−0.09693 (11)0.0286 (9)
H3W0.35500.9157−0.13410.043*
H4W0.29660.8264−0.13940.043*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Tb10.01048 (13)0.01587 (15)0.01480 (12)0.00208 (11)0.00389 (9)0.00099 (11)
O10.0140 (17)0.047 (3)0.0180 (17)−0.0045 (17)0.0027 (14)0.0043 (17)
O20.0294 (19)0.023 (2)0.0202 (17)0.0082 (17)0.0143 (15)0.0022 (16)
O50.039 (2)0.028 (2)0.039 (2)0.017 (2)0.0227 (19)0.0083 (19)
C10.013 (2)0.019 (3)0.021 (3)0.001 (2)0.007 (2)0.001 (2)
C20.009 (2)0.017 (3)0.021 (2)−0.002 (2)0.002 (2)0.000 (2)
C70.019 (3)0.026 (3)0.022 (3)−0.004 (2)0.005 (2)−0.009 (2)
C80.020 (3)0.030 (3)0.012 (2)0.008 (2)0.008 (2)0.010 (2)
C30.017 (2)0.024 (3)0.007 (2)0.005 (2)0.0035 (18)−0.002 (2)
C60.016 (3)0.047 (4)0.022 (3)−0.004 (3)0.008 (2)−0.006 (3)
C40.020 (3)0.022 (3)0.023 (3)−0.002 (2)0.007 (2)−0.004 (2)
C50.028 (3)0.026 (3)0.034 (3)0.013 (3)0.016 (2)0.007 (3)
N10.015 (2)0.046 (4)0.024 (2)0.007 (2)0.0081 (18)0.003 (2)
O30.0175 (18)0.033 (2)0.0197 (17)−0.0024 (16)0.0089 (14)0.0018 (15)
O40.032 (2)0.020 (2)0.0195 (17)0.0121 (17)0.0116 (15)0.0052 (16)
O60.0095 (17)0.050 (3)0.0259 (18)0.0005 (18)0.0013 (14)0.0006 (18)
O1W0.0149 (16)0.028 (2)0.0201 (16)0.0064 (16)0.0076 (14)0.0074 (16)
O2W0.040 (2)0.028 (2)0.0232 (18)−0.0068 (19)0.0179 (17)−0.0074 (17)

Geometric parameters (Å, °)

Tb1—O52.285 (4)C7—H70.9300
Tb1—O6i2.3055 (14)C8—O61.251 (5)
Tb1—O4ii2.3814 (14)C8—C31.505 (6)
Tb1—O12.386 (3)C3—C41.385 (7)
Tb1—O2W2.4286 (13)C6—N11.329 (7)
Tb1—O22.439 (3)C6—H60.9300
Tb1—O1W2.4444 (13)C4—C51.380 (5)
Tb1—O3iii2.4476 (13)C4—H40.9300
O1—C21.245 (6)C5—N11.3306
O2—C11.251 (5)C5—H50.9300
O5—C81.249 (6)O3—Tb1iii2.4476 (13)
C1—O41.255 (5)O4—Tb1ii2.3814 (14)
C1—C1ii1.549 (9)O6—Tb1i2.3055 (14)
C2—O31.257 (5)O1W—H1W0.8400
C2—C2iii1.537 (9)O1W—H2W0.8400
C7—C31.382 (7)O2W—H3W0.8400
C7—C61.387 (7)O2W—H4W0.8400
O5—Tb1—O6i103.43 (11)O4—C1—C1ii116.8 (5)
O5—Tb1—O4ii151.65 (9)O1—C2—O3127.1 (4)
O6i—Tb1—O4ii80.4O1—C2—C2iii117.5 (5)
O5—Tb1—O184.30 (13)O3—C2—C2iii115.4 (5)
O6i—Tb1—O1154.26 (9)C3—C7—C6118.6 (5)
O4ii—Tb1—O1104.49 (10)C3—C7—H7120.7
O5—Tb1—O2W72.32 (10)C6—C7—H7120.7
O6i—Tb1—O2W79.4O5—C8—O6125.1 (4)
O4ii—Tb1—O2W135.3O5—C8—C3117.3 (5)
O1—Tb1—O2W79.74 (9)O6—C8—C3117.6 (4)
O5—Tb1—O2140.94 (11)C7—C3—C4117.7 (4)
O6i—Tb1—O278.63 (9)C7—C3—C8120.8 (5)
O4ii—Tb1—O267.37 (8)C4—C3—C8121.5 (4)
O1—Tb1—O280.13 (11)N1—C6—C7123.6 (5)
O2W—Tb1—O269.77 (8)N1—C6—H6118.2
O5—Tb1—O1W75.35 (9)C7—C6—H6118.2
O6i—Tb1—O1W72.49 (5)C5—C4—C3120.0 (4)
O4ii—Tb1—O1W79.29 (5)C5—C4—H4120.0
O1—Tb1—O1W133.11 (8)C3—C4—H4120.0
O2W—Tb1—O1W130.20 (6)N1—C5—C4122.4 (2)
O2—Tb1—O1W138.86 (8)N1—C5—H5118.8
O5—Tb1—O3iii85.32 (10)C4—C5—H5118.8
O6i—Tb1—O3iii137.68 (6)C6—N1—C5117.7 (2)
O4ii—Tb1—O3iii74.2C2—O3—Tb1iii118.5 (2)
O1—Tb1—O3iii66.61 (8)C1—O4—Tb1ii118.2 (2)
O2W—Tb1—O3iii141.3C8—O6—Tb1i149.8 (3)
O2—Tb1—O3iii119.75 (9)Tb1—O1W—H1W117.6
O1W—Tb1—O3iii69.9Tb1—O1W—H2W123.0
C2—O1—Tb1119.2 (3)H1W—O1W—H2W106.4
C1—O2—Tb1116.5 (3)Tb1—O2W—H3W126.8
C8—O5—Tb1154.8 (3)Tb1—O2W—H4W124.0
O2—C1—O4126.6 (4)H3W—O2W—H4W106.6
O2—C1—C1ii116.6 (5)

Symmetry codes: (i) −x+1/2, −y+3/2, −z; (ii) −x+1/2, −y+5/2, −z; (iii) −x+1, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1W···N1iv0.841.832.665177
O1W—H2W···O2v0.842.192.992 (3)159
O2W—H3W···O3vi0.842.002.835 (3)177
O2W—H4W···O1Wi0.842.212.998 (3)156

Symmetry codes: (iv) x−1/2, y+1/2, z; (v) x, −y+2, z+1/2; (vi) −x+1, −y+2, −z; (i) −x+1/2, −y+3/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NC2122).

References

  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Fang, Z.-Q., Zeng, R.-H., Li, Y.-T., Yang, S. & Song, Z.-F. (2009). Acta Cryst. E65, m118. [PMC free article] [PubMed]
  • Feng, L. Y., Wang, Y. H., Hu, C. W., Li, Y. G. & Wang, E. B. (2003). J. Mol. Struct.650, 115–122.
  • James, S. L. (2003). Chem. Soc. Rev.32, 276–288. [PubMed]
  • Serre, C., Millange, F., Thouvenot, C., Gardant, N., Pelle, F. & Ferey, G. (2004). J. Mater. Chem.14, 1540–1543.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Xia, S. Q., Hu, S. M., Dai, J. C., Wu, X. T., Fu, Z. Y., Zhang, J. J. & Du, W. X. (2004). Polyhedron, 23, 1003–1009.
  • Yaghi, O. M., O’Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. & Kim, J. (2003). Nature (London), 423, 705–714. [PubMed]
  • Yaghi, O. M., Li, H. L., Davis, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res.31, 474–484.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography