PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 January 1; 65(Pt 1): m115–m116.
Published online 2008 December 20. doi:  10.1107/S1600536808042785
PMCID: PMC2968017

catena-Poly[[4′,5′-bis­(methyl­sulfan­yl)-4,5-ethyl­enedithio­tetra­thio­fulvalene] [[dichloridomercurate(II)]-μ-dichlorido]]

Abstract

The title compound, {(C10H10S8)[HgCl3]}n, is a sulfur-rich charge-transfer compound in which C10H10S8 + cations and HgCl3 anions are assembled by S(...)S [3.371 (5)–3.588 (5) Å] and S(...)Cl [2.833 (4)–3.488 (4) Å] contacts, and by weak inter­molecular C—H(...)Cl hydrogen bonds, forming a two-dimensional wave-like structure. The two C atoms of the –CH2—CH2– group in one of the cations are disordered over two sites with relative occupancies of 0.83 (2) and 0.17 (2).

Related literature

For background information, see: Banks et al. (1978 [triangle]); Enomoto et al. (2001 [triangle]); Kistenmacher et al. (1980 [triangle]); Zhilyaeva et al. (1999 [triangle]). For realted structures, see: Zhang et al. (1996 [triangle]); Hudhomme et al. (2001 [triangle]); Wu et al. (1998 [triangle]); Aakeröy et al. (1999 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m115-scheme1.jpg

Experimental

Crystal data

  • (C10H10S8)[HgCl3]
  • M r = 693.6
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m115-efi1.jpg
  • a = 7.7216 (15) Å
  • b = 25.541 (5) Å
  • c = 19.626 (4) Å
  • β = 97.96 (3)°
  • V = 3833.3 (13) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 9.31 mm−1
  • T = 193 (2) K
  • 0.30 × 0.06 × 0.05 mm

Data collection

  • Rigaku Mercury CCD diffractometer
  • Absorption correction: multi-scan (Jacobson, 1998 [triangle]) T min = 0.167, T max = 0.653
  • 34949 measured reflections
  • 6730 independent reflections
  • 6416 reflections with I > 2σ(I)
  • R int = 0.081

Refinement

  • R[F 2 > 2σ(F 2)] = 0.097
  • wR(F 2) = 0.158
  • S = 1.70
  • 6730 reflections
  • 393 parameters
  • 7 restraints
  • H-atom parameters constrained
  • Δρmax = 1.24 e Å−3
  • Δρmin = −1.37 e Å−3

Data collection: CrystalClear (Rigaku, 2001 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPII (Johnson, 1976 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808042785/lh2724sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808042785/lh2724Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the NSF of the Education Committee of Jiangsu Province, P. R. China (grant 06 KJB150102) and the Research Fund for the Youth of SuZhou University (No. Q3109605).

supplementary crystallographic information

Comment

Although tetrathiafulvalene (TTF) and its radical salts have been investigated for several decades, they are still attracting much attention from chemists. The TTF unit can exist in three stable redox-states (TTF / TTF+/ TTF2+) and for this reason their derivatives have been used as functional building blocks in supramolecular chemistry and materials chemistry. There are two synthetic routes to prepare the oxidized TTF derivatives: chemical oxidization and electrochemical oxidization. It is known that HgCl2 can oxidize the TTF derivatives readily, forming a set of charge-transfer (CT) salts (Banks et al. 1978; Enomoto et al. 2001; Kistenmacher et al. 1980; Zhilyaeva et al. 1999). The chloromercurate anions are found to have monomeric, dimeric or polymeric structures. In this paper, we report the synthesis and crystal structure of a new charge-transfer salt (I).

Compound (I) consists of two DMTEDT-TTF+ cations and two HgCl3- anions (Fig. 1). Unlike the precursor DMTEDT-TTF (Zhang et al., 1996), each DMTEDT-TTF+ cation is nearly co-planar through the conjugated TTF moiety (bis(dithio)tetrathiofulvalene, C6S8) with the maximum deviation of 0.152 (4) Å (S1) and 0.179 (4) Å (S10). Compared with those of the molecule DMTEDT-TTF, the bond lengths of the conjugated systems in (I) are averaged which are close to those of DMTEDT-TTF+ perchlorate (Hudhomme et al., 2001). The central C═C bond distance of the TTF unit is the charge-sensitive parameter for the electronic states of the TTF derivatives. The distances were reported to be 1.33–1.35 Å for TTCn-TTF0, 1.38–1.40 Å for TTCn-TTF+ and 1.42–1.43 Å for TTCn-TTF2+, respectively (Wu et al., 1998). The C═C distances in (I) are 1.403 (18) Å (C5═C6) and 1.390 (17) Å (C15═C16), which correspond to the monovalent cation. The two cations are almost parallel but oriented in opposite direction. The dihedral angle between the least-squires planes of TTF moieties is 1.77 (7)°. Four strong intramolecular S···S contacts (S3···S14 3.508 (5) Å; S4···S13 3.382 (5) Å; S5···S12 3.513 (5) Å; S6···S11 3.371 (5) Å) and an intermolecular S···S interaction (S13···S6i 3.532 (5) Å) connect the cations into a one-dimensional chain extending along the a axis (Fig. 2). The HgCl3 anions are linked via the intramolecular Hg2···Cl3 (2.833 (4) Å) and intermolecular Hg1···Cl6i (2.901 (4) Å) secondary bonding interactions, thereby forming a one-dimensional [HgCl3-]n chain extending along the a axis. The DMTEDT-TTF moiety interacts with the one-dimensional chain by three intramolecular S···Cl interactions (S4···Cl3 3.440 (5) Å; S6···Cl6 3.435 (5) Å; S13···Cl3 3.488 (5) Å, Fig. 2). It seems like that the [HgCl3-]n chain is stalibized by two rings: a 8-member Hg2—Cl6—S6—C6—C5—S4—Cl3 ring and a 5-member Hg1—Cl3—S13—S6i—Cl6i ring, which are linked alternatively by the S···S contacts mentioned above. Between the stacking and the chain there are several side-to-side intermolecular interactions (S15···Cl4iv 3.425 (5) Å; S1···S7v 3.438 (5) Å; S3···S10vi 3.588 (5) Å) and two intermolecular C—H···Cl hydrogen bonding interactions (Aakeröy et al. 1999) which result in the formation of a wave-like two-dimensional structure as shown in Fig. 3 [symmetry codes: (i)x - 1,y,z; (iv)-x + 1,-y + 1,-z + 1; (v)x - 1,-y + 3/2,z - 1/2; (vi)x,-y + 3/2,z - 1/2].

Experimental

A solution of HgCl2 (5.7 mg, 0.02 mmol) in MeCN (2 ml) was added into the solution of DMTEDT-TTF (bis(methylthio)ethylenedithiotetrathiafulvalene, C10H10H8, (4.0 mg, 0.01 mmol) in CH2Cl2 (2 ml). Slow evaporation of solevnts from the resulting orange solution for 3 days afforded dark blue prisms of (I). Yield: 4.9 mg (71%). CH&N elemental analysis. Found: C, 17.02; H, 1.64. Calculated for C20H20Cl6Hg2S16: C, 17.31; H, 1.45%.

Refinement

Two carbon atoms of one DMTEDT-TTF group are disordered over two orientations with occupancy factors of 0.83/0.17 for C1/C1A and C2/C2A. These two disordered C atoms are refined isotropically, while all other non-hydrogen atoms are refined anisotropically. The H atoms are placed in geometrically idealized positions (C—H = 0.98 Å for methyl groups and C—H = 0.99 Å for methylene groups) and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. The disordered C and H atoms are omitted.
Fig. 2.
Part of the crystal structure showing the face-to-face stacking of DMTEDT-TTF+ cations (connected by S···S interactions) and the one-dimensional chain of the HgCl3- anions (connected by Hg···Cl interactions) ...
Fig. 3.
Part of the crystal structure of (I). The intermolecular S···S, S···Cl interactions (dashed lines) and H-bonds connect the DMTEDT-TTF+ stacks and the HgCl3- chains into a two-dimensional 'wave-like' structure. ...

Crystal data

(C10H10S8)[HgCl3]F(000) = 2632
Mr = 693.6Dx = 2.404 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5236 reflections
a = 7.7216 (15) Åθ = 3.1–25.0°
b = 25.541 (5) ŵ = 9.31 mm1
c = 19.626 (4) ÅT = 193 K
β = 97.96 (3)°Prism, blue
V = 3833.3 (13) Å30.30 × 0.06 × 0.05 mm
Z = 8

Data collection

Rigaku Mercury CCD diffractometer6730 independent reflections
Radiation source: fine-focus sealed tube6416 reflections with I > 2σ(I)
graphiteRint = 0.081
ω scansθmax = 25.0°, θmin = 3.1°
Absorption correction: multi-scan (Jacobson, 1998)h = −9→9
Tmin = 0.167, Tmax = 0.653k = −30→30
34949 measured reflectionsl = −23→23

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.097Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.158H-atom parameters constrained
S = 1.70w = 1/[σ2(Fo2) + (0.041P)2 + 19.9P] where P = (Fo2 + 2Fc2)/3
6730 reflections(Δ/σ)max = 0.001
393 parametersΔρmax = 1.24 e Å3
7 restraintsΔρmin = −1.37 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Hg10.45533 (8)0.41687 (2)0.78044 (3)0.02899 (18)
Hg20.91933 (8)0.42035 (2)0.70386 (3)0.02898 (18)
Cl10.2922 (5)0.34433 (16)0.7290 (2)0.0399 (10)
Cl20.5596 (5)0.43869 (17)0.89856 (19)0.0373 (10)
Cl30.6117 (4)0.47942 (13)0.71089 (19)0.0267 (8)
Cl40.9288 (5)0.43697 (15)0.58359 (19)0.0344 (9)
Cl50.7983 (5)0.34659 (16)0.7568 (2)0.0384 (10)
Cl61.1374 (5)0.47851 (14)0.77105 (19)0.0289 (8)
S10.6081 (5)0.68944 (14)0.48929 (18)0.0254 (8)
S20.6520 (5)0.55351 (14)0.52101 (19)0.0281 (9)
S30.7971 (4)0.69856 (13)0.63019 (16)0.0177 (7)
S40.8238 (4)0.58695 (13)0.65687 (17)0.0181 (7)
S51.0073 (4)0.72162 (13)0.78194 (17)0.0195 (7)
S61.0639 (4)0.60862 (13)0.80084 (16)0.0158 (7)
S71.2347 (5)0.74770 (15)0.91583 (19)0.0291 (9)
S81.2877 (5)0.62303 (13)0.93929 (17)0.0208 (8)
S90.8532 (5)0.55476 (15)0.99144 (19)0.0302 (9)
S100.8668 (5)0.69012 (15)1.02585 (18)0.0272 (8)
S110.6767 (4)0.58628 (13)0.85657 (17)0.0194 (7)
S120.6762 (4)0.69875 (13)0.88435 (16)0.0184 (7)
S130.4332 (4)0.60475 (12)0.71297 (16)0.0155 (7)
S140.4648 (4)0.71822 (13)0.73263 (17)0.0191 (7)
S150.2034 (4)0.61569 (13)0.57563 (17)0.0200 (7)
S160.2282 (5)0.74147 (14)0.60020 (18)0.0247 (8)
C30.7079 (17)0.6574 (5)0.5647 (7)0.018 (3)
C40.7214 (17)0.6054 (5)0.5764 (7)0.019 (3)
C50.8706 (16)0.6496 (5)0.6860 (7)0.016 (3)
C60.9700 (16)0.6589 (5)0.7503 (7)0.017 (3)
C71.1340 (16)0.7023 (5)0.8570 (6)0.013 (3)
C81.1591 (15)0.6493 (5)0.8665 (6)0.014 (3)
C91.067 (2)0.7954 (6)0.9159 (8)0.034 (4)
H9A1.10780.82370.94780.051*
H9B0.96300.77900.93050.051*
H9C1.03660.80970.86950.051*
C101.281 (2)0.5544 (6)0.9207 (7)0.028 (3)
H10A1.34970.53530.95850.042*
H10B1.32960.54800.87790.042*
H10C1.15930.54220.91540.042*
C110.957 (2)0.5888 (6)1.0678 (8)0.036 (4)
H11A0.96760.56431.10730.043*
H11B1.07650.59921.06060.043*
C120.859 (2)0.6364 (7)1.0853 (7)0.036 (4)
H12A0.90840.64841.13200.043*
H12B0.73550.62681.08640.043*
C130.7717 (16)0.6061 (5)0.9379 (6)0.015 (3)
C140.7783 (16)0.6589 (5)0.9497 (7)0.017 (3)
C150.6144 (17)0.6478 (5)0.8274 (6)0.016 (3)
C160.5164 (16)0.6568 (5)0.7635 (6)0.014 (3)
C170.3223 (16)0.6446 (5)0.6483 (6)0.015 (3)
C180.3376 (16)0.6969 (5)0.6581 (6)0.014 (3)
C190.228 (2)0.5470 (5)0.5954 (7)0.027 (3)
H19A0.16480.52640.55760.041*
H19B0.17950.53950.63800.041*
H19C0.35200.53760.60130.041*
C200.3862 (19)0.7930 (5)0.5994 (7)0.025 (3)
H20A0.33750.82080.56790.037*
H20B0.49230.77900.58390.037*
H20C0.41510.80740.64580.037*
C10.508 (2)0.6359 (6)0.4384 (9)0.030 (3)*0.83 (2)
H1A0.39740.62650.45560.036*0.83 (2)
H1B0.47810.64790.39020.036*0.83 (2)
C20.621 (3)0.5870 (7)0.4389 (8)0.030 (3)*0.83 (2)
H2A0.73640.59690.42670.036*0.83 (2)
H2B0.56550.56250.40320.036*0.83 (2)
C1A0.612 (12)0.6349 (19)0.431 (3)0.030 (3)*0.17 (2)
H1C0.55890.64580.38460.036*0.17 (2)
H1D0.73560.62530.42870.036*0.17 (2)
C2A0.516 (8)0.587 (3)0.453 (3)0.030 (3)*0.17 (2)
H2D0.48820.56320.41270.036*0.17 (2)
H2C0.40520.59780.46820.036*0.17 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Hg10.0336 (3)0.0270 (3)0.0250 (3)−0.0062 (3)−0.0007 (2)−0.0006 (3)
Hg20.0341 (4)0.0281 (3)0.0241 (3)−0.0064 (3)0.0021 (2)0.0027 (3)
Cl10.029 (2)0.031 (2)0.056 (3)−0.0062 (17)−0.0026 (18)−0.0127 (19)
Cl20.036 (2)0.047 (3)0.025 (2)0.0104 (19)−0.0085 (16)−0.0051 (17)
Cl30.0252 (18)0.0184 (18)0.037 (2)0.0013 (14)0.0049 (15)0.0038 (15)
Cl40.048 (2)0.031 (2)0.0234 (19)−0.0109 (18)0.0014 (17)0.0027 (16)
Cl50.036 (2)0.029 (2)0.052 (3)−0.0013 (17)0.0115 (19)0.0120 (19)
Cl60.0265 (19)0.0238 (19)0.033 (2)0.0029 (15)−0.0086 (15)−0.0099 (15)
S10.033 (2)0.021 (2)0.0196 (18)0.0012 (16)−0.0071 (15)0.0011 (15)
S20.037 (2)0.018 (2)0.025 (2)−0.0005 (16)−0.0087 (16)−0.0092 (15)
S30.0232 (18)0.0132 (17)0.0151 (16)−0.0030 (14)−0.0029 (13)0.0003 (13)
S40.0211 (17)0.0111 (17)0.0208 (17)0.0000 (14)−0.0022 (13)0.0019 (13)
S50.0237 (18)0.0144 (17)0.0184 (17)−0.0015 (14)−0.0036 (14)0.0002 (13)
S60.0192 (17)0.0118 (16)0.0153 (16)0.0015 (13)−0.0011 (13)0.0003 (13)
S70.030 (2)0.024 (2)0.029 (2)0.0002 (16)−0.0115 (16)−0.0100 (16)
S80.0262 (19)0.0195 (19)0.0144 (17)0.0020 (15)−0.0055 (14)−0.0003 (14)
S90.039 (2)0.022 (2)0.027 (2)0.0066 (17)−0.0032 (17)0.0106 (16)
S100.032 (2)0.027 (2)0.0189 (18)−0.0011 (16)−0.0076 (15)−0.0023 (15)
S110.0235 (18)0.0139 (17)0.0195 (17)−0.0004 (14)−0.0016 (14)0.0016 (14)
S120.0226 (18)0.0158 (18)0.0148 (17)−0.0006 (14)−0.0046 (14)−0.0013 (13)
S130.0158 (16)0.0126 (16)0.0171 (17)−0.0002 (13)−0.0013 (13)0.0006 (13)
S140.0260 (19)0.0138 (17)0.0148 (17)0.0010 (14)−0.0063 (14)−0.0001 (13)
S150.0243 (18)0.0177 (18)0.0164 (17)−0.0046 (14)−0.0032 (14)0.0005 (13)
S160.0281 (19)0.0177 (19)0.0250 (19)−0.0005 (15)−0.0077 (15)0.0049 (15)
C30.019 (7)0.018 (7)0.016 (7)0.000 (6)0.004 (5)−0.006 (6)
C40.020 (7)0.018 (7)0.015 (7)0.004 (6)−0.009 (5)−0.004 (6)
C50.015 (7)0.013 (7)0.021 (7)−0.002 (5)0.004 (5)0.007 (5)
C60.019 (7)0.012 (7)0.022 (7)0.007 (5)0.006 (6)0.000 (6)
C70.013 (6)0.020 (7)0.008 (6)0.002 (5)0.001 (5)−0.004 (5)
C80.009 (6)0.026 (8)0.007 (6)0.003 (5)−0.001 (5)0.000 (5)
C90.045 (10)0.013 (8)0.039 (9)−0.006 (7)−0.008 (7)0.001 (7)
C100.041 (9)0.022 (8)0.020 (8)0.003 (7)−0.004 (7)0.003 (6)
C110.034 (9)0.035 (10)0.034 (9)0.005 (7)−0.015 (7)0.010 (7)
C120.041 (10)0.051 (11)0.014 (8)0.000 (8)−0.004 (7)0.008 (7)
C130.016 (7)0.020 (7)0.010 (6)0.000 (6)0.004 (5)0.005 (5)
C140.012 (7)0.020 (7)0.018 (7)0.005 (5)−0.002 (5)0.002 (6)
C150.022 (7)0.010 (7)0.016 (7)0.005 (5)−0.003 (5)−0.005 (5)
C160.015 (7)0.012 (7)0.017 (7)0.002 (5)0.007 (5)0.002 (5)
C170.013 (6)0.021 (7)0.010 (6)0.003 (5)−0.001 (5)−0.004 (5)
C180.013 (6)0.014 (7)0.014 (7)−0.001 (5)−0.001 (5)−0.004 (5)
C190.038 (9)0.017 (8)0.025 (8)−0.001 (6)0.001 (7)0.005 (6)
C200.037 (9)0.013 (7)0.023 (8)−0.010 (6)0.000 (6)0.005 (6)

Geometric parameters (Å, °)

Hg1—Cl12.384 (4)S14—C181.733 (12)
Hg1—Cl22.411 (4)S15—C171.749 (12)
Hg1—Cl32.516 (4)S15—C191.801 (14)
Hg1—Cl6i2.901 (4)S16—C181.743 (13)
Hg2—Cl32.833 (4)S16—C201.797 (14)
Hg2—Cl42.409 (4)C3—C41.348 (19)
Hg2—Cl52.403 (4)C5—C61.403 (18)
Hg2—Cl62.483 (4)C7—C81.375 (18)
Cl6—Hg1ii2.901 (4)C9—H9A0.9800
S1—C31.772 (14)C9—H9B0.9800
S1—C1A1.80 (2)C9—H9C0.9800
S1—C11.804 (15)C10—H10A0.9800
S2—C41.750 (13)C10—H10B0.9800
S2—C2A1.80 (2)C10—H10C0.9800
S2—C21.810 (14)C11—C121.50 (2)
S3—C51.707 (13)C11—H11A0.9900
S3—C31.728 (13)C11—H11B0.9900
S4—C41.731 (13)C12—H12A0.9900
S4—C51.720 (13)C12—H12B0.9900
S5—C61.728 (13)C13—C141.367 (18)
S5—C71.724 (12)C15—C161.390 (17)
S6—C61.720 (13)C17—C181.353 (18)
S6—C81.738 (13)C19—H19A0.9800
S7—C71.741 (13)C19—H19B0.9800
S7—C91.780 (16)C19—H19C0.9800
S8—C81.757 (12)C20—H20A0.9800
S8—C101.791 (15)C20—H20B0.9800
S9—C131.744 (13)C20—H20C0.9800
S9—C111.820 (16)C1—C21.52 (2)
S10—C141.747 (13)C1—H1A0.9900
S10—C121.806 (16)C1—H1B0.9900
S11—C131.737 (13)C2—H2A0.9900
S11—C151.717 (13)C2—H2B0.9900
S12—C141.739 (13)C1A—C2A1.52 (3)
S12—C151.739 (13)C1A—H1C0.9900
S13—C161.728 (13)C1A—H1D0.9900
S13—C171.755 (13)C2A—H2D0.9900
S14—C161.709 (13)C2A—H2C0.9900
Cl1—Hg1—Cl2132.27 (16)C12—C11—H11A108.9
Cl1—Hg1—Cl3121.93 (14)S9—C11—H11A108.9
Cl2—Hg1—Cl3104.68 (14)C12—C11—H11B108.9
Cl1—Hg1—Cl6i90.12 (12)S9—C11—H11B108.9
Cl2—Hg1—Cl6i95.88 (12)H11A—C11—H11B107.7
Cl3—Hg1—Cl6i94.96 (11)C11—C12—S10114.0 (11)
Cl5—Hg2—Cl4128.94 (14)C11—C12—H12A108.7
Cl5—Hg2—Cl6121.00 (14)S10—C12—H12A108.7
Cl4—Hg2—Cl6107.73 (13)C11—C12—H12B108.7
Cl5—Hg2—Cl391.01 (12)S10—C12—H12B108.7
Cl4—Hg2—Cl395.35 (13)H12A—C12—H12B107.6
Cl6—Hg2—Cl399.61 (11)C14—C13—S11116.4 (10)
Hg1—Cl3—Hg299.03 (11)C14—C13—S9129.6 (10)
Hg2—Cl6—Hg1ii102.40 (12)S11—C13—S9113.9 (8)
C3—S1—C1A97 (3)C13—C14—S12116.7 (10)
C3—S1—C1102.4 (8)C13—C14—S10126.6 (10)
C1A—S1—C127 (3)S12—C14—S10116.6 (8)
C4—S2—C2A102 (3)C16—C15—S11123.0 (10)
C4—S2—C2100.7 (8)C16—C15—S12121.5 (10)
C2A—S2—C228 (2)S11—C15—S12115.5 (7)
C5—S3—C395.4 (7)C15—C16—S14122.9 (10)
C5—S4—C495.7 (6)C15—C16—S13120.2 (10)
C7—S5—C695.1 (6)S14—C16—S13116.9 (7)
C6—S6—C894.7 (6)C18—C17—S15124.0 (10)
C7—S7—C9101.4 (7)C18—C17—S13116.4 (9)
C8—S8—C10102.2 (6)S15—C17—S13119.6 (8)
C13—S9—C11102.6 (7)C17—C18—S14117.3 (10)
C14—S10—C1299.3 (7)C17—C18—S16121.8 (10)
C15—S11—C1395.9 (6)S14—C18—S16120.8 (7)
C14—S12—C1595.3 (6)S15—C19—H19A109.5
C16—S13—C1794.3 (6)S15—C19—H19B109.5
C16—S14—C1895.0 (6)H19A—C19—H19B109.5
C17—S15—C19102.0 (7)S15—C19—H19C109.5
C18—S16—C20102.5 (6)H19A—C19—H19C109.5
C4—C3—S3117.3 (10)H19B—C19—H19C109.5
C4—C3—S1127.7 (10)S16—C20—H20A109.5
S3—C3—S1115.0 (8)S16—C20—H20B109.5
C3—C4—S4116.0 (10)H20A—C20—H20B109.5
C3—C4—S2129.1 (10)S16—C20—H20C109.5
S4—C4—S2115.0 (8)H20A—C20—H20C109.5
C6—C5—S3123.0 (10)H20B—C20—H20C109.5
C6—C5—S4121.3 (10)C2—C1—S1114.7 (12)
S3—C5—S4115.6 (8)C2—C1—H1A108.6
C5—C6—S6121.8 (10)S1—C1—H1A108.6
C5—C6—S5121.6 (10)C2—C1—H1B108.6
S6—C6—S5116.7 (8)S1—C1—H1B108.6
C8—C7—S5116.7 (9)H1A—C1—H1B107.6
C8—C7—S7121.6 (9)C1—C2—S2113.6 (12)
S5—C7—S7121.6 (8)C1—C2—H2A108.8
C7—C8—S6116.8 (9)S2—C2—H2A108.8
C7—C8—S8122.6 (9)C1—C2—H2B108.8
S6—C8—S8120.5 (8)S2—C2—H2B108.8
S7—C9—H9A109.5H2A—C2—H2B107.7
S7—C9—H9B109.5C2A—C1A—S1113 (5)
H9A—C9—H9B109.5C2A—C1A—H1C108.9
S7—C9—H9C109.5S1—C1A—H1C108.9
H9A—C9—H9C109.5C2A—C1A—H1D108.9
H9B—C9—H9C109.5S1—C1A—H1D108.9
S8—C10—H10A109.5H1C—C1A—H1D107.7
S8—C10—H10B109.5C1A—C2A—S2109 (5)
H10A—C10—H10B109.5C1A—C2A—H2D109.8
S8—C10—H10C109.5S2—C2A—H2D109.8
H10A—C10—H10C109.5C1A—C2A—H2C109.8
H10B—C10—H10C109.5S2—C2A—H2C109.8
C12—C11—S9113.5 (10)H2D—C2A—H2C108.2

Symmetry codes: (i) x−1, y, z; (ii) x+1, y, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C2—H2A···Cl4iii0.992.763.619 (19)146
C2—H2B···Cl3iv0.992.683.645 (19)164

Symmetry codes: (iii) −x+2, −y+1, −z+1; (iv) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2724).

References

  • Aakeröy, C. B., Evans, T. A., Seddon, K. R. & Pálinkó, I. (1999). New J. Chem.23, 145–152.
  • Banks, R. H., Edlstein, N. M., Rietz, R. R., Templeton, D. H. & Zalkin, A. (1978). J. Am. Chem. Soc.100, 1958–1959.
  • Enomoto, M., Miyazaki, A. & Enoki, T. (2001). Bull. Chem. Soc. Jpn, 74, 459–470.
  • Hudhomme, P., Moustarder, S. L., Durand, C., Gallego-Planas, N., Mercier, N., Blanchard, P., Levillain, E., Allain, M., Gorgues, A. & Riou, A. (2001). Chem. Eur. J.7, 5070–5083. [PubMed]
  • Jacobson, R. (1998). Private communication to the Rigaku Corporation, Tokyo, Japan.
  • Johnson, C. K. (1976). ORTEPII Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  • Kistenmacher, T. J., Rossi, M., Chiang, C. C., Van Duyne, R. P. & Siedle, A. R. (1980). Inorg. Chem.19, 3604–3608.
  • Rigaku (2001). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wu, L. P., Dai, J., Munakata, M., Kuroda-Sowa, T., Maekawa, M., Suenaga, Y. & Ohno, Y. (1998). J. Chem. Soc. Dalton Trans. pp. 3255–3261.
  • Zhang, B., Li, Y.-L., Han, H.-X., Yang, J.-K., Zhu, D.-B. & Maruyama, Y.-S. (1996). Acta Cryst. C52, 400–403.
  • Zhilyaeva, E. I., Torunova, S. A., Lyubovskaya, R. N., Konovalikhin, S. V., Shilov, G. V., Kaplunov, M. G., Golubev, E. V., Lyubovskii, R. B. & Yudanova, E. I. (1999). Synth. Met.107, 123–127.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography