PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 January 1; 65(Pt 1): m113.
Published online 2008 December 20. doi:  10.1107/S1600536808042578
PMCID: PMC2968015

Aqua­bis(dichloro­acetato-κO)(1,10-phenanthroline-κ2 N,N′)copper(II)

Abstract

In the title complex, [Cu(C2HCl2O2)2(C12H8N2)(H2O)], the CuII ion has a distorted square-pyramidal coordination geometry. The equatorial positions are occupied by two N atoms from a 1,10-phenanthroline ligand [Cu—N = 1.994 (3) and 2.027 (3) Å] and two O atoms from dichloro­acetate ligands and a water mol­ecule [Cu—O = 1.971 (2) and 1.939 (2) Å]. One O atom from another dichloro­acetate ligand occupies the apical positon [Cu—O = 2.152 (3) Å]. Inter­molecular O—H(...)O hydrogen bonds link the mol­ecules into centrosymmetric dimers. The crystal packing also exhibits weak inter­molecular C—H(...)O hydrogen bonds, π–π inter­actions [centroid–centroid distance = 3.734 (2) Å] and short inter­molecular Cl(...)Cl contacts [3.306 (2) and 3.278 (2) Å].

Related literature

For applications of dichloro­acetic acid derivatives, see: Múdra et al. (2003 [triangle]); Lin et al. (2001 [triangle]); Zhu & Xiao (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m113-scheme1.jpg

Experimental

Crystal data

  • [Cu(C2HCl2O2)2(C12H8N2)(H2O)]
  • M r = 517.62
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m113-efi1.jpg
  • a = 8.2701 (8) Å
  • b = 10.8883 (11) Å
  • c = 12.0125 (12) Å
  • α = 67.4390 (10)°
  • β = 77.585 (2)°
  • γ = 73.776 (2)°
  • V = 952.02 (16) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.74 mm−1
  • T = 273 (2) K
  • 0.32 × 0.25 × 0.21 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.606, T max = 0.711
  • 5043 measured reflections
  • 3346 independent reflections
  • 2539 reflections with I > 2σ(I)
  • R int = 0.064

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.106
  • S = 1.01
  • 3346 reflections
  • 261 parameters
  • 3 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.63 e Å−3
  • Δρmin = −0.51 e Å−3

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808042578/cv2493sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808042578/cv2493Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Postgraduate Foundation of Taishan University for financial support (grant No. Y07–2–15).

supplementary crystallographic information

Comment

Dichloroacetic acid and its derivatives are biologically active compounds which have been widely studied because of their fascinating topologies and potential applications as functional materials (Múdra et al., 2003; Lin et al., 2001; Zhu et al., 2006;). In our study of this field, we selected 1,10-phenanthroline as the co-ligand to continue our exploration to the Cu complexes with the dichloroacetic acid ligand. Herein we report the structure of the title complex (I).

In (I) (Fig. 1), the Cu ion has a distorted square-pyramidal coordination. Two N atoms from 1,10-phenanthroline ligand and two oxygen atoms from a dichloroacetic acid ligand form a basal plane, and an aqua atom occupy the axial apical position. Intermolecular O—H···O hydrogen bonds (Table 2) link the molecules into centrosymmetric dimers. The crystal packing exhibits also weak intermolecular C—H···O hydrogen bonds, π–π interactions and short intermolecular Cl···Cl contacts (Table 1).

Experimental

A mixture of Cu(CH3COO)2*3H2O(204 mg, 1 mmol) and 1,10-phenanthroline (185 mg, 1 mmol) in methanol(30 ml) was placed in a Teflon-lined stainless steel Parr bomb that was heated at 403 K for 48 h. The bomb was then cooled down to the room temperature, the solution was filtered. The solvent was removed from the filtrate under vacuum, and the solid residue was recrystallized from diethyl ether; blue crystals suitable for X-Ray diffraction study were obtained. Yield, 0.760 g, 83%. m.p. 573 K. Analysis, calculated for C16H12Cl4CuN2O5: C 46.73, H 2.94, N 6.81; found: C 46.95, H 2.56, N 7.07%. The elemental analyses were performed with a Perkine Elemer PE2400II instrument.

Refinement

C-bound H atoms were geometrically positioned (C—H 0.93–0.97 Å) and refined as riding, with Uiso(H)=1.2Ueq(C). The water H atoms were located on a Fourier map and isotropically refined with the distance restraints O—H=0.85 (2) Å.

Figures

Fig. 1.
The structure of the title complex, showing 30% probability displacement ellipsoids and the atom-numbering scheme. The H atoms are omitted.

Crystal data

[Cu(C2HCl2O2)2(C12H8N2)(H2O)]Z = 2
Mr = 517.62F(000) = 518
Triclinic, P1Dx = 1.806 Mg m3
a = 8.2701 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.8883 (11) ÅCell parameters from 1923 reflections
c = 12.0125 (12) Åθ = 2.3–27.1°
α = 67.439 (1)°µ = 1.74 mm1
β = 77.585 (2)°T = 273 K
γ = 73.776 (2)°Block, colorless
V = 952.02 (16) Å30.32 × 0.25 × 0.21 mm

Data collection

Bruker SMART CCD area-detector diffractometer3346 independent reflections
Radiation source: fine-focus sealed tube2539 reflections with I > 2σ(I)
graphiteRint = 0.064
[var phi] and ω scansθmax = 25.1°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −9→8
Tmin = 0.606, Tmax = 0.711k = −12→12
5043 measured reflectionsl = −14→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.00w = 1/[σ2(Fo2) + (0.046P)2] where P = (Fo2 + 2Fc2)/3
3346 reflections(Δ/σ)max < 0.001
261 parametersΔρmax = 0.63 e Å3
3 restraintsΔρmin = −0.51 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.23680 (6)0.74569 (4)0.41387 (4)0.03375 (16)
Cl40.12884 (15)0.83880 (10)0.01776 (9)0.0498 (3)
Cl30.18005 (19)0.55281 (11)0.05837 (10)0.0653 (4)
Cl10.66991 (17)0.90846 (12)0.08639 (11)0.0717 (4)
Cl20.5908 (2)0.69108 (14)0.04161 (11)0.0831 (5)
O30.1567 (3)0.7463 (2)0.2733 (2)0.0399 (6)
C50.2814 (4)0.9060 (3)0.5379 (3)0.0310 (8)
O50.1749 (4)0.5698 (3)0.5130 (2)0.0471 (7)
N20.1747 (4)0.9522 (3)0.3541 (2)0.0324 (7)
N10.3082 (4)0.7741 (3)0.5489 (3)0.0343 (7)
C90.0716 (5)1.1808 (4)0.2276 (3)0.0447 (10)
H90.02631.23920.15640.054*
O20.7530 (4)0.6097 (3)0.2708 (2)0.0586 (8)
C130.6067 (5)0.6806 (4)0.2683 (3)0.0344 (8)
C160.0957 (5)0.6794 (3)0.1249 (3)0.0340 (8)
H16−0.02720.68610.14320.041*
C110.2127 (6)1.1856 (4)0.4993 (4)0.0471 (10)
H110.18731.27790.48870.056*
C150.1639 (5)0.6447 (3)0.2447 (3)0.0341 (8)
O40.2088 (4)0.5243 (3)0.3049 (2)0.0609 (9)
C140.5542 (5)0.7783 (4)0.1437 (3)0.0357 (9)
H140.43300.81980.15360.043*
C10.3872 (5)0.6806 (4)0.6436 (3)0.0447 (10)
H10.41320.58930.65090.054*
C120.2859 (6)1.0935 (4)0.5985 (4)0.0510 (11)
H120.31301.12420.65310.061*
C80.1025 (5)1.2327 (4)0.3051 (3)0.0421 (10)
H80.07661.32640.28790.051*
C100.1075 (5)1.0398 (4)0.2542 (3)0.0398 (9)
H100.08361.00630.20040.048*
C60.2062 (5)1.0040 (3)0.4314 (3)0.0306 (8)
C70.1742 (5)1.1436 (4)0.4118 (3)0.0368 (9)
C40.3223 (5)0.9501 (4)0.6208 (3)0.0390 (9)
C20.4306 (6)0.7160 (4)0.7297 (4)0.0506 (11)
H20.48100.64820.79550.061*
O10.5012 (4)0.6801 (3)0.3559 (2)0.0634 (9)
C30.4009 (6)0.8478 (4)0.7199 (3)0.0477 (10)
H30.43210.87100.77790.057*
H5A0.192 (6)0.535 (3)0.458 (2)0.065 (16)*
H5B0.194 (6)0.509 (3)0.5816 (15)0.068 (15)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0471 (3)0.0207 (2)0.0318 (3)−0.00140 (19)−0.0107 (2)−0.00826 (19)
Cl40.0728 (8)0.0307 (5)0.0416 (6)−0.0135 (5)−0.0179 (5)−0.0005 (4)
Cl30.1158 (11)0.0350 (6)0.0486 (6)−0.0027 (6)−0.0209 (6)−0.0222 (5)
Cl10.0801 (9)0.0472 (7)0.0746 (8)−0.0293 (6)−0.0338 (7)0.0168 (6)
Cl20.1151 (12)0.0745 (9)0.0677 (8)0.0119 (8)−0.0340 (8)−0.0440 (7)
O30.0622 (18)0.0227 (13)0.0366 (14)−0.0029 (12)−0.0151 (13)−0.0119 (11)
C50.034 (2)0.0258 (19)0.0303 (18)−0.0034 (15)−0.0046 (16)−0.0087 (15)
O50.073 (2)0.0312 (15)0.0346 (16)−0.0132 (15)−0.0142 (15)−0.0038 (14)
N20.0419 (19)0.0222 (16)0.0315 (16)−0.0044 (13)−0.0051 (14)−0.0090 (13)
N10.0420 (18)0.0271 (17)0.0326 (16)−0.0042 (14)−0.0059 (14)−0.0104 (13)
C90.058 (3)0.026 (2)0.039 (2)−0.0008 (18)−0.014 (2)−0.0011 (17)
O20.0396 (17)0.0558 (19)0.0453 (16)0.0073 (15)−0.0018 (14)0.0063 (14)
C130.037 (2)0.029 (2)0.037 (2)−0.0090 (17)−0.0027 (18)−0.0108 (17)
C160.041 (2)0.0239 (19)0.0350 (19)−0.0038 (16)−0.0062 (17)−0.0094 (16)
C110.066 (3)0.029 (2)0.052 (2)−0.010 (2)−0.010 (2)−0.018 (2)
C150.041 (2)0.024 (2)0.034 (2)−0.0025 (16)−0.0069 (17)−0.0084 (16)
O40.113 (3)0.0235 (15)0.0449 (16)0.0005 (16)−0.0331 (17)−0.0086 (13)
C140.032 (2)0.030 (2)0.039 (2)−0.0029 (16)−0.0048 (17)−0.0088 (16)
C10.060 (3)0.024 (2)0.044 (2)−0.0006 (19)−0.018 (2)−0.0048 (17)
C120.072 (3)0.043 (3)0.051 (3)−0.018 (2)−0.008 (2)−0.026 (2)
C80.051 (3)0.0200 (19)0.047 (2)−0.0035 (17)−0.007 (2)−0.0049 (17)
C100.051 (2)0.030 (2)0.035 (2)−0.0034 (18)−0.0145 (18)−0.0065 (17)
C60.034 (2)0.0242 (19)0.0298 (18)−0.0039 (15)0.0009 (15)−0.0097 (15)
C70.040 (2)0.0229 (19)0.042 (2)−0.0055 (16)−0.0010 (18)−0.0088 (17)
C40.044 (2)0.039 (2)0.036 (2)−0.0094 (18)−0.0024 (18)−0.0149 (18)
C20.063 (3)0.043 (3)0.040 (2)−0.005 (2)−0.020 (2)−0.006 (2)
O10.0491 (19)0.083 (2)0.0386 (16)0.0057 (16)−0.0020 (15)−0.0158 (16)
C30.057 (3)0.052 (3)0.038 (2)−0.010 (2)−0.014 (2)−0.016 (2)

Geometric parameters (Å, °)

Cu1—O31.939 (2)C13—O11.213 (4)
Cu1—O51.971 (2)C13—C141.536 (5)
Cu1—N11.994 (3)C16—C151.531 (5)
Cu1—N22.027 (3)C16—H160.9800
Cu1—O12.152 (3)C11—C121.359 (6)
Cl4—C161.774 (3)C11—C71.417 (5)
Cl3—C161.759 (4)C11—H110.9300
Cl1—C141.767 (4)C15—O41.223 (4)
Cl2—C141.753 (4)C14—H140.9800
O3—C151.261 (4)C1—C21.374 (5)
C5—N11.348 (4)C1—H10.9300
C5—C41.394 (5)C12—C41.432 (5)
C5—C61.444 (5)C12—H120.9300
O5—H5A0.85 (3)C8—C71.410 (5)
O5—H5B0.85 (3)C8—H80.9300
N2—C101.331 (4)C10—H100.9300
N2—C61.355 (4)C6—C71.401 (5)
N1—C11.348 (4)C4—C31.411 (5)
C9—C81.355 (5)C2—C31.349 (5)
C9—C101.399 (5)C2—H20.9300
C9—H90.9300C3—H30.9300
O2—C131.240 (5)
Cl1···Cl4i3.306 (2)Cg1···Cg2iii3.734 (2)
Cl2···Cl3ii3.278 (2)
O3—Cu1—O591.06 (10)O4—C15—O3127.3 (3)
O3—Cu1—N1171.76 (11)O4—C15—C16117.8 (3)
O5—Cu1—N195.86 (11)O3—C15—C16114.7 (3)
O3—Cu1—N290.28 (11)C13—C14—Cl2110.9 (3)
O5—Cu1—N2149.53 (12)C13—C14—Cl1109.3 (2)
N1—Cu1—N281.49 (11)Cl2—C14—Cl1110.0 (2)
O3—Cu1—O195.15 (11)C13—C14—H14108.9
O5—Cu1—O1101.24 (12)Cl2—C14—H14108.9
N1—Cu1—O187.88 (12)Cl1—C14—H14108.9
N2—Cu1—O1108.94 (12)N1—C1—C2122.1 (4)
C15—O3—Cu1127.3 (2)N1—C1—H1118.9
N1—C5—C4124.2 (3)C2—C1—H1119.0
N1—C5—C6115.7 (3)C11—C12—C4121.4 (4)
C4—C5—C6120.1 (3)C11—C12—H12119.3
Cu1—O5—H5A99 (2)C4—C12—H12119.3
Cu1—O5—H5B137 (3)C9—C8—C7119.6 (3)
H5A—O5—H5B111 (3)C9—C8—H8120.2
C10—N2—C6117.7 (3)C7—C8—H8120.2
C10—N2—Cu1129.8 (3)N2—C10—C9121.9 (4)
C6—N2—Cu1112.5 (2)N2—C10—H10119.0
C1—N1—C5117.1 (3)C9—C10—H10119.1
C1—N1—Cu1128.6 (3)N2—C6—C7124.1 (3)
C5—N1—Cu1114.1 (2)N2—C6—C5116.1 (3)
C8—C9—C10120.4 (4)C7—C6—C5119.8 (3)
C8—C9—H9119.8C6—C7—C8116.3 (3)
C10—C9—H9119.8C6—C7—C11118.9 (3)
O1—C13—O2125.7 (4)C8—C7—C11124.7 (3)
O1—C13—C14117.0 (3)C5—C4—C3116.3 (3)
O2—C13—C14117.3 (3)C5—C4—C12118.5 (3)
C15—C16—Cl3113.0 (3)C3—C4—C12125.2 (3)
C15—C16—Cl4112.4 (2)C3—C2—C1120.8 (3)
Cl3—C16—Cl4109.30 (19)C3—C2—H2119.6
C15—C16—H16107.3C1—C2—H2119.6
Cl3—C16—H16107.3C13—O1—Cu1144.6 (3)
Cl4—C16—H16107.3C2—C3—C4119.4 (3)
C12—C11—C7121.2 (4)C2—C3—H3120.3
C12—C11—H11119.4C4—C3—H3120.3
C7—C11—H11119.4

Symmetry codes: (i) −x+1, −y+2, −z; (ii) −x+1, −y+1, −z; (iii) −x, −y+1, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C16—H16···O2iv0.982.243.118 (5)149
O5—H5B···O2v0.85 (2)1.81 (2)2.654 (3)174 (3)
O5—H5A···O40.85 (2)1.86 (2)2.673 (4)159 (3)

Symmetry codes: (iv) x−1, y, z; (v) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2493).

References

  • Lin, M. M., Wei, H. H. & Lee, G. H. (2001). Polyhedron, 20, 3057–3063.
  • Múdra, M., Moncol’, J., Švorec, J., Melník, M., Lönnecke, P., Glowiak, T. & Kirmse, R. (2003). Inorg. Chem. Commun.6, 1259–1265.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Zhu, L.-G. & Xiao, H.-P. (2006). Acta Cryst. E62, m2061–m2063.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography