PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 January 1; 65(Pt 1): m109–m110.
Published online 2008 December 20. doi:  10.1107/S1600536808042852
PMCID: PMC2968013

Bis[4-(methyl­amino)benzoato-κO]bis­(nicotinamide-κN)zinc(II)

Abstract

The title zinc complex, [Zn(C8H8NO2)2(C6H6N2O)2], is composed of two monodentate 4-(methyl­amino)benzoate and two monodentate nicotinamide ligands. The coordination around the Zn atom is distorted tetra­hedral. The dihedral angles between the two benzene rings and the two pyridine rings are 78.30 (6) and 68.86 (5)°. In the crystal structure, inter­molecular N—H(...)O hydrogen bonds link the mol­ecules into an infinite three-dimensional network.

Related literature

For general backgroud, see: Antolini et al. (1982 [triangle]); Krishnamachari (1974 [triangle]); Nadzhafov et al. (1981 [triangle]). For related structures, see: Necefoğlu et al. (2002 [triangle]); Hökelek et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m109-scheme1.jpg

Experimental

Crystal data

  • [Zn(C8H8NO2)2(C6H6N2O)2]
  • M r = 609.93
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m109-efi1.jpg
  • a = 8.085 (4) Å
  • b = 16.036 (7) Å
  • c = 21.333 (4) Å
  • β = 95.78 (3)°
  • V = 2751.8 (19) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.95 mm−1
  • T = 294 (2) K
  • 0.55 × 0.20 × 0.10 mm

Data collection

  • Rigaku AFC-7S diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.624, T max = 0.911
  • 17939 measured reflections
  • 17079 independent reflections
  • 7521 reflections with I > 2σ(I)
  • R int = 0.045
  • 3 standard reflections every 150 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044
  • wR(F 2) = 0.148
  • S = 1.00
  • 17079 reflections
  • 380 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.67 e Å−3
  • Δρmin = −0.58 e Å−3

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1994 [triangle]); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN for Windows (Molecular Structure Corporation, 1997 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and Mercury (Macrae, 2006 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808042852/su2084sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808042852/su2084Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Transition metal complexes with biochemical molecules show interesting physical and/or chemical properties, through which they may find applications in biological systems (Antolini et al., 1982). The structure-function-coordination relationships of the arylcarboxylate ion in ZnII complexes of benzoic acid derivatives may be changed, depending on the nature and position of the substituted groups on the benzene ring, the nature of the additional ligand molecule or solvent, and the medium of the synthesis (Nadzhafov et al., 1981). Nicotinamide (NA) is one form of niacin, and a deficiency of this vitamin leads to loss of copper from the body, known as pellagra disease. Victims of pellagra show unusually high serum and urinary copper levels (Krishnamachari, 1974).

The structure determination of the title compound, a zinc complex with two methylaminobenzoate (MAB) and two nicotinamide (NA) ligands, was undertaken in order to determine the properties of the MAB and NA ligands and also to compare the results obtained with those reported previously.

The molecular structure of the title monomeric complex, containing two monodenate MAB and two monodentate NA ligands, is illustrated in Fig. 1. The coordination around the Zn atom is distorted tetrahedral (Table 1).

The near equalities of the C1—O1 [1.284 (2) Å], C1—O2 [1.248 (2) Å] and C9—O3 [1.278 (2) Å], C9—O4 [1.241 (2) Å] bonds in the carboxylate groups indicate delocalized bonding arrangements, rather than localized single and double bonds, as in the other zinc(II) complexes: bis(4-hydroxybenzoato-κO)bis(nicotinamide-κN)zinc(II) (Necefoğlu et al., 2002) and diaquabis(N,N'-diethylnicotinamide-κN)bis(4-\ fluorobenzoato-κO)- zinc(II) (Hökelek et al., 2007). This may be due to the intramolecular N—H···O hydrogen bonding of the carboxylate O atoms (Table 2).

The Zn atom is displaced out of the least-squares plane of the carboxylate groups (O1/C1/O2) and (O3/C9/O4) by -0.1070 (3) Å and -0.0967 (4) Å, respectively. The dihedral angles between the planar carboxylate groups (O1/C1/O2) and (O3/C9/O4) and the adjacent benzene rings, A (C2—C7) and B (C10—C15), are 7.92 (13)° and 6.60 (13)°, respectively. The dihedral angles between the two benzene rings, A and B, and the two pyridine rings, C (N1/C17—C21) and D (N3/C23—C27), are A/B = 78.30 (6)° and C/D = 68.86 (5)°. The benzene rings are oriented with respect to the pyridine rings at dihedral angles of A/C = 20.95 (5)°, A/D = 77.94 (6)°, B/C = 80.59 (5)° and B/D = 33.66 (6)°.

As can be seen from the crystal packing diagram (Fig. 2), the molecules are linked by intermolecular N—H···O hydrogen bonds to form an infinite three-dimensional network (Table 2).

Experimental

The title compound was prepared by the reaction of ZnNO4 (1.61 g, 10 mmol) in H2O (25 ml) and nicotinamide (2.44 g, 20 mmol) in H2O (100 ml), with sodium 4-N-methylaminobenzoate (3.00 g, 20 mmol) in H2O (100 ml), at room temperature. The mixture was filtered and set aside to crystallize at ambient temperature for one week, giving colorless single crystals.

Refinement

The NH H-atoms, H51 and H61, were located in difference Fourier maps and freely refined [N—H = 0.88 (2) and 0.90 (3) Å, resepectively]. The remaining H atoms were positioned geometrically and treated as riding atoms: N-H = 0.86 Å, C-H = 0.93 - 0.96 Å, with Uiso(H) = 1.2 or 1.5Ueq(parent N- or C-atom).

Figures

Fig. 1.
The molecular structure of the title complex, with the atom-numbering scheme and displacement ellipsoids drawn at the 40% probability level.
Fig. 2.
A view down the a axis of the crystal packing of the title compound, showing the N-H···O hydrogen bonds (blue dashed lines) linking the molecules to form an infinite three-dimensional network (H atoms not involved in hydrogen bonding ...

Crystal data

[Zn(C8H8NO2)2(C6H6N2O)2]F(000) = 1264
Mr = 609.93Dx = 1.472 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 8.085 (4) Åθ = 20.1–27.1°
b = 16.036 (7) ŵ = 0.95 mm1
c = 21.333 (4) ÅT = 294 K
β = 95.78 (3)°Plate, colorless
V = 2751.8 (19) Å30.55 × 0.20 × 0.10 mm
Z = 4

Data collection

Rigaku AFC-7S diffractometer7521 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.045
graphiteθmax = 40.0°, θmin = 2.3°
ω/2θ scansh = 0→14
Absorption correction: ψ scan (North et al., 1968)k = 0→29
Tmin = 0.624, Tmax = 0.911l = −38→38
17939 measured reflections3 standard reflections every 150 reflections
17079 independent reflections intensity decay: 1%

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H atoms treated by a mixture of independent and constrained refinement
S = 1.00w = 1/[σ2(Fo2) + (0.064P)2] where P = (Fo2 + 2Fc2)/3
17079 reflections(Δ/σ)max = 0.003
380 parametersΔρmax = 0.67 e Å3
0 restraintsΔρmin = −0.58 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Zn10.70261 (2)0.883707 (11)0.824978 (8)0.02982 (5)
O10.48643 (15)0.83449 (8)0.83709 (6)0.0433 (3)
O20.65060 (16)0.72567 (9)0.83365 (7)0.0499 (3)
O30.89177 (14)0.87348 (8)0.77778 (6)0.0399 (3)
O40.72134 (14)0.85533 (10)0.69085 (7)0.0480 (3)
O51.3622 (2)0.92075 (12)1.03306 (7)0.0696 (5)
O60.12579 (14)1.06871 (10)0.83276 (6)0.0501 (3)
N10.62073 (14)1.00559 (8)0.81250 (6)0.0294 (2)
N20.14054 (17)1.16197 (10)0.75439 (8)0.0461 (4)
H2A0.03461.16910.74940.055*
H2B0.20331.18890.73120.055*
N30.83802 (17)0.88321 (8)0.91350 (6)0.0332 (3)
N41.31932 (19)0.98898 (11)0.94118 (7)0.0474 (4)
H4A1.41811.00950.94510.057*
H4B1.25211.00070.90850.057*
N5−0.0098 (3)0.54968 (13)0.91042 (12)0.0686 (6)
H510.006 (3)0.4943 (18)0.9059 (13)0.081 (9)*
N61.44462 (19)0.85451 (14)0.58922 (8)0.0509 (4)
H611.538 (3)0.8568 (15)0.6141 (11)0.056 (7)*
C10.51107 (19)0.75548 (11)0.84074 (7)0.0343 (3)
C20.37136 (19)0.70213 (10)0.85572 (7)0.0323 (3)
C30.3855 (2)0.61500 (11)0.85629 (9)0.0419 (4)
H30.48280.59040.84540.050*
C40.2581 (2)0.56531 (11)0.87261 (10)0.0487 (4)
H40.26920.50760.87130.058*
C50.1117 (2)0.60028 (11)0.89119 (9)0.0430 (4)
C60.0946 (2)0.68736 (11)0.88884 (9)0.0418 (4)
H6−0.00290.71230.89920.050*
C70.2234 (2)0.73610 (10)0.87094 (9)0.0373 (3)
H70.20990.79370.86910.045*
C8−0.1605 (3)0.57827 (18)0.93347 (14)0.0713 (7)
H8A−0.13400.61330.96960.107*
H8B−0.22410.53120.94520.107*
H8C−0.22430.60950.90110.107*
C90.86333 (18)0.86285 (10)0.71831 (8)0.0315 (3)
C101.01355 (17)0.85983 (10)0.68309 (7)0.0298 (3)
C111.00398 (19)0.84079 (11)0.61932 (8)0.0373 (3)
H110.90070.82950.59770.045*
C121.1442 (2)0.83816 (12)0.58699 (7)0.0391 (4)
H121.13420.82460.54440.047*
C131.30180 (19)0.85588 (11)0.61844 (7)0.0342 (3)
C141.31028 (18)0.87565 (12)0.68256 (8)0.0384 (4)
H141.41280.88820.70430.046*
C151.17060 (18)0.87688 (11)0.71403 (7)0.0359 (3)
H151.18050.88930.75680.043*
C161.4524 (3)0.8232 (2)0.52666 (11)0.0807 (9)
H16A1.41620.76620.52470.121*
H16B1.56480.82650.51600.121*
H16C1.38150.85600.49740.121*
C170.45776 (16)1.02117 (9)0.80810 (7)0.0292 (3)
H170.38490.97640.80890.035*
C180.39254 (17)1.10066 (9)0.80236 (7)0.0286 (3)
C190.50145 (18)1.16809 (10)0.80272 (8)0.0333 (3)
H190.46161.22250.79950.040*
C200.66992 (19)1.15209 (11)0.80794 (9)0.0377 (3)
H200.74581.19580.80860.045*
C210.72488 (17)1.07040 (11)0.81222 (8)0.0339 (3)
H210.83861.06010.81500.041*
C220.20678 (17)1.10968 (10)0.79763 (8)0.0324 (3)
C230.99457 (19)0.91195 (10)0.92055 (7)0.0328 (3)
H231.03670.93710.88620.039*
C241.0964 (2)0.90585 (10)0.97668 (7)0.0347 (3)
C251.0320 (3)0.86721 (12)1.02707 (8)0.0469 (4)
H251.09750.86051.06510.056*
C260.8706 (3)0.83885 (14)1.02045 (9)0.0505 (5)
H260.82540.81391.05420.061*
C270.7764 (2)0.84774 (12)0.96324 (8)0.0418 (4)
H270.66730.82860.95900.050*
C281.2709 (2)0.93956 (12)0.98526 (8)0.0414 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn10.02093 (7)0.03526 (10)0.03313 (9)0.00195 (6)0.00203 (6)0.00011 (7)
N10.0195 (5)0.0333 (6)0.0351 (6)0.0005 (4)0.0016 (4)0.0020 (5)
N20.0223 (6)0.0578 (10)0.0581 (9)0.0050 (6)0.0030 (6)0.0255 (8)
N30.0313 (6)0.0355 (7)0.0326 (6)0.0026 (5)0.0018 (5)−0.0002 (5)
N40.0339 (7)0.0644 (10)0.0413 (8)−0.0028 (7)−0.0083 (6)0.0072 (7)
N50.0552 (11)0.0446 (10)0.1095 (18)−0.0141 (9)0.0262 (11)0.0041 (11)
N60.0287 (7)0.0872 (13)0.0372 (7)−0.0010 (8)0.0052 (6)−0.0064 (8)
O10.0325 (6)0.0377 (6)0.0597 (8)−0.0058 (5)0.0043 (5)0.0075 (6)
O20.0329 (6)0.0584 (8)0.0607 (8)−0.0003 (6)0.0155 (6)−0.0087 (7)
O30.0262 (5)0.0568 (8)0.0372 (6)0.0011 (5)0.0063 (4)−0.0029 (5)
O40.0200 (5)0.0701 (9)0.0529 (7)−0.0037 (5)−0.0012 (5)0.0024 (7)
O50.0570 (9)0.0906 (12)0.0546 (9)−0.0181 (9)−0.0264 (7)0.0248 (9)
O60.0218 (5)0.0739 (9)0.0547 (7)−0.0007 (6)0.0043 (5)0.0282 (7)
C10.0303 (7)0.0408 (8)0.0317 (7)−0.0034 (6)0.0027 (6)−0.0036 (6)
C20.0310 (7)0.0336 (7)0.0325 (7)−0.0014 (6)0.0033 (5)−0.0029 (6)
C30.0384 (8)0.0342 (8)0.0539 (10)0.0043 (7)0.0092 (7)−0.0062 (7)
C40.0495 (10)0.0287 (8)0.0689 (13)−0.0028 (7)0.0109 (9)−0.0041 (8)
C50.0397 (9)0.0375 (9)0.0517 (10)−0.0086 (7)0.0045 (8)0.0005 (7)
C60.0297 (7)0.0391 (9)0.0575 (10)0.0003 (6)0.0088 (7)0.0012 (8)
C70.0332 (7)0.0291 (7)0.0501 (9)0.0011 (6)0.0063 (7)−0.0005 (6)
C80.0428 (11)0.0760 (17)0.097 (2)−0.0142 (11)0.0142 (12)0.0192 (15)
C90.0221 (6)0.0322 (7)0.0401 (8)−0.0007 (5)0.0031 (5)0.0007 (6)
C100.0203 (5)0.0355 (7)0.0332 (7)−0.0007 (5)0.0009 (5)−0.0025 (6)
C110.0242 (6)0.0515 (10)0.0350 (7)−0.0034 (6)−0.0030 (5)−0.0069 (7)
C120.0316 (7)0.0558 (10)0.0292 (7)−0.0009 (7)−0.0011 (6)−0.0079 (7)
C130.0252 (6)0.0447 (8)0.0329 (7)0.0001 (6)0.0038 (5)−0.0012 (6)
C140.0224 (6)0.0578 (11)0.0346 (7)−0.0053 (6)0.0011 (5)−0.0065 (7)
C150.0224 (6)0.0536 (10)0.0314 (7)−0.0048 (6)0.0012 (5)−0.0073 (7)
C160.0495 (12)0.149 (3)0.0462 (12)0.0039 (16)0.0179 (10)−0.0182 (15)
C170.0199 (5)0.0319 (7)0.0355 (7)−0.0026 (5)0.0019 (5)0.0010 (6)
C180.0195 (5)0.0337 (7)0.0322 (7)−0.0002 (5)0.0014 (5)0.0029 (5)
C190.0253 (6)0.0315 (7)0.0423 (8)−0.0018 (5)−0.0003 (6)0.0026 (6)
C200.0239 (6)0.0362 (8)0.0520 (9)−0.0088 (6)−0.0003 (6)0.0030 (7)
C210.0188 (5)0.0403 (8)0.0421 (8)−0.0030 (5)0.0002 (5)0.0042 (6)
C220.0192 (5)0.0391 (8)0.0384 (7)0.0013 (5)0.0010 (5)0.0053 (6)
C230.0325 (7)0.0360 (7)0.0290 (6)0.0027 (6)−0.0009 (5)0.0006 (6)
C240.0382 (8)0.0352 (7)0.0293 (7)0.0044 (6)−0.0043 (6)−0.0014 (6)
C250.0577 (12)0.0508 (10)0.0301 (7)−0.0012 (9)−0.0062 (7)0.0040 (7)
C260.0612 (12)0.0563 (12)0.0341 (8)−0.0096 (10)0.0042 (8)0.0078 (8)
C270.0425 (9)0.0460 (10)0.0372 (8)−0.0031 (8)0.0055 (7)0.0016 (7)
C280.0390 (8)0.0473 (10)0.0352 (8)0.0023 (7)−0.0091 (6)−0.0010 (7)

Geometric parameters (Å, °)

Zn1—O11.9584 (14)C8—H8C0.9600
Zn1—O31.9210 (14)C10—C111.389 (2)
Zn1—N12.0722 (15)C10—C91.492 (2)
Zn1—N32.0854 (15)C11—C121.386 (2)
O1—C11.284 (2)C11—H110.9300
O2—C11.248 (2)C12—H120.9300
O3—C91.278 (2)C13—N61.366 (2)
O4—C91.2410 (19)C13—C121.408 (2)
O5—C281.235 (2)C14—C131.399 (2)
N1—C171.3350 (18)C14—H140.9300
N1—C211.338 (2)C15—C141.371 (2)
N2—H2A0.8600C15—C101.398 (2)
N2—H2B0.8600C15—H150.9300
N3—C231.341 (2)C16—H16A0.9600
N3—C271.343 (2)C16—H16B0.9600
N4—C281.319 (2)C16—H16C0.9600
N4—H4A0.8600C17—H170.9300
N4—H4B0.8600C18—C171.380 (2)
N5—C81.434 (3)C18—C221.502 (2)
N5—H510.90 (3)C19—C201.379 (2)
N6—C161.433 (3)C19—C181.394 (2)
N6—H610.88 (2)C19—H190.9300
C1—C21.477 (2)C20—H200.9300
C2—C71.382 (2)C21—C201.383 (3)
C2—C31.402 (2)C21—H210.9300
C3—C41.374 (3)C22—O61.2333 (19)
C3—H30.9300C22—N21.320 (2)
C4—H40.9300C23—C241.387 (2)
C5—N51.369 (3)C23—H230.9300
C5—C41.403 (3)C24—C251.387 (3)
C6—C51.404 (3)C24—C281.505 (3)
C6—H60.9300C25—C261.376 (3)
C7—C61.386 (2)C25—H250.9300
C7—H70.9300C26—H260.9300
C8—H8A0.9600C27—C261.379 (3)
C8—H8B0.9600C27—H270.9300
O1—Zn1—N196.85 (6)C15—C10—C9120.17 (14)
O1—Zn1—N3105.85 (6)C12—C11—C10121.78 (14)
O3—Zn1—O1143.41 (6)C12—C11—H11119.1
O3—Zn1—N1105.91 (5)C10—C11—H11119.1
O3—Zn1—N395.81 (6)C11—C12—C13120.21 (15)
N1—Zn1—N3104.58 (5)C11—C12—H12119.9
C1—O1—Zn1105.71 (11)C13—C12—H12119.9
C9—O3—Zn1117.30 (10)N6—C13—C14119.28 (15)
C17—N1—Zn1119.06 (10)N6—C13—C12123.04 (15)
C17—N1—C21118.13 (14)C14—C13—C12117.68 (14)
C21—N1—Zn1122.69 (10)C15—C14—C13121.36 (14)
C22—N2—H2A120.0C15—C14—H14119.3
C22—N2—H2B120.0C13—C14—H14119.3
H2A—N2—H2B120.0C14—C15—C10121.32 (15)
C23—N3—C27118.54 (15)C14—C15—H15119.3
C23—N3—Zn1120.24 (11)C10—C15—H15119.3
C27—N3—Zn1120.97 (12)N6—C16—H16A109.5
C28—N4—H4A120.0N6—C16—H16B109.5
C28—N4—H4B120.0H16A—C16—H16B109.5
H4A—N4—H4B120.0N6—C16—H16C109.5
C5—N5—C8125.0 (2)H16A—C16—H16C109.5
C5—N5—H51115.8 (18)H16B—C16—H16C109.5
C8—N5—H51119.1 (18)N1—C17—C18122.99 (13)
C13—N6—C16123.28 (17)N1—C17—H17118.5
C13—N6—H61116.0 (16)C18—C17—H17118.5
C16—N6—H61117.5 (16)C17—C18—C19118.71 (13)
O2—C1—O1120.47 (15)C17—C18—C22117.73 (13)
O2—C1—C2121.63 (16)C19—C18—C22123.54 (14)
O1—C1—C2117.86 (14)C20—C19—C18118.31 (15)
C7—C2—C3117.54 (15)C20—C19—H19120.8
C7—C2—C1121.41 (15)C18—C19—H19120.8
C3—C2—C1121.04 (15)C19—C20—C21119.31 (14)
C4—C3—C2121.17 (16)C19—C20—H20120.3
C4—C3—H3119.4C21—C20—H20120.3
C2—C3—H3119.4N1—C21—C20122.53 (14)
C3—C4—C5121.00 (17)N1—C21—H21118.7
C3—C4—H4119.5C20—C21—H21118.7
C5—C4—H4119.5O6—C22—N2124.08 (14)
N5—C5—C4119.96 (18)O6—C22—C18119.76 (14)
N5—C5—C6121.96 (18)N2—C22—C18116.16 (14)
C4—C5—C6118.08 (16)N3—C23—C24122.98 (16)
C7—C6—C5119.76 (16)N3—C23—H23118.5
C7—C6—H6120.1C24—C23—H23118.5
C5—C6—H6120.1C23—C24—C25117.63 (17)
C2—C7—C6122.31 (16)C23—C24—C28123.21 (16)
C2—C7—H7118.8C25—C24—C28119.15 (15)
C6—C7—H7118.8C26—C25—C24119.65 (17)
N5—C8—H8A109.5C26—C25—H25120.2
N5—C8—H8B109.5C24—C25—H25120.2
H8A—C8—H8B109.5C25—C26—C27119.34 (18)
N5—C8—H8C109.5C25—C26—H26120.3
H8A—C8—H8C109.5C27—C26—H26120.3
H8B—C8—H8C109.5N3—C27—C26121.83 (18)
O4—C9—O3123.17 (15)N3—C27—H27119.1
O4—C9—C10121.35 (15)C26—C27—H27119.1
O3—C9—C10115.48 (13)O5—C28—N4122.70 (18)
C11—C10—C15117.64 (14)O5—C28—C24119.20 (18)
C11—C10—C9122.18 (13)N4—C28—C24118.09 (15)
O3—Zn1—O1—C146.26 (16)C4—C5—N5—C8176.6 (2)
N1—Zn1—O1—C1174.95 (11)C6—C5—N5—C8−3.9 (4)
N3—Zn1—O1—C1−77.74 (11)C7—C6—C5—N5178.0 (2)
O1—Zn1—O3—C946.46 (17)C7—C6—C5—C4−2.6 (3)
N1—Zn1—O3—C9−79.85 (13)C2—C7—C6—C5−0.8 (3)
N3—Zn1—O3—C9173.16 (12)C11—C10—C9—O4−6.2 (3)
O3—Zn1—N1—C17143.78 (11)C15—C10—C9—O4173.48 (16)
O1—Zn1—N1—C17−7.29 (12)C11—C10—C9—O3173.75 (16)
N3—Zn1—N1—C17−115.68 (12)C15—C10—C9—O3−6.6 (2)
O3—Zn1—N1—C21−40.14 (14)C15—C10—C11—C120.3 (3)
O1—Zn1—N1—C21168.79 (13)C9—C10—C11—C12179.99 (17)
N3—Zn1—N1—C2160.41 (14)C10—C11—C12—C13−0.7 (3)
O3—Zn1—N3—C2328.53 (13)C14—C13—N6—C16170.4 (2)
O1—Zn1—N3—C23178.74 (12)C12—C13—N6—C16−9.6 (3)
N1—Zn1—N3—C23−79.60 (13)N6—C13—C12—C11−179.86 (19)
O3—Zn1—N3—C27−145.61 (14)C14—C13—C12—C110.2 (3)
O1—Zn1—N3—C274.61 (15)C15—C14—C13—N6−179.25 (19)
N1—Zn1—N3—C27106.26 (14)C15—C14—C13—C120.7 (3)
Zn1—O1—C1—O2−3.24 (19)C14—C15—C10—C110.6 (3)
Zn1—O1—C1—C2174.63 (11)C14—C15—C10—C9−179.10 (16)
Zn1—O3—C9—O4−3.2 (2)C10—C15—C14—C13−1.1 (3)
Zn1—O3—C9—C10176.82 (10)C19—C18—C17—N1−1.6 (2)
C21—N1—C17—C181.0 (2)C22—C18—C17—N1179.83 (14)
Zn1—N1—C17—C18177.25 (12)C17—C18—C22—O643.7 (2)
C17—N1—C21—C200.4 (2)C19—C18—C22—O6−134.76 (18)
Zn1—N1—C21—C20−175.73 (13)C17—C18—C22—N2−135.66 (17)
C27—N3—C23—C240.8 (2)C19—C18—C22—N245.9 (2)
Zn1—N3—C23—C24−173.51 (12)C20—C19—C18—C170.9 (2)
C23—N3—C27—C26−1.3 (3)C20—C19—C18—C22179.33 (15)
Zn1—N3—C27—C26172.97 (15)C18—C19—C20—C210.4 (3)
O2—C1—C2—C7172.14 (16)N1—C21—C20—C19−1.1 (3)
O1—C1—C2—C7−5.7 (2)N3—C23—C24—C250.8 (3)
O2—C1—C2—C3−6.5 (2)N3—C23—C24—C28−178.69 (16)
O1—C1—C2—C3175.65 (16)C23—C24—C25—C26−1.8 (3)
C7—C2—C3—C4−1.3 (3)C28—C24—C25—C26177.67 (18)
C1—C2—C3—C4177.42 (17)C23—C24—C28—O5−169.02 (19)
C3—C2—C7—C62.7 (3)C25—C24—C28—O511.5 (3)
C1—C2—C7—C6−176.01 (16)C23—C24—C28—N411.6 (3)
C2—C3—C4—C5−2.0 (3)C25—C24—C28—N4−167.84 (18)
N5—C5—C4—C3−176.6 (2)C24—C25—C26—C271.4 (3)
C6—C5—C4—C33.9 (3)N3—C27—C26—C250.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2B···O2i0.862.002.839 (3)166
N4—H4B···O6ii0.862.122.950 (3)161
N6—H61···O4ii0.88 (2)2.10 (2)2.955 (3)166 (2)

Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2084).

References

  • Antolini, L., Battaglia, L. P., Corradi, A. B., Marcotrigiano, G., Menabue, L., Pellacani, G. C. & Saladini, M. (1982). Inorg. Chem.21, 1391–1395.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Hökelek, T., Çaylak, N. & Necefoğlu, H. (2007). Acta Cryst. E63, m2561–m2562.
  • Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr.27, 108–111. [PubMed]
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Molecular Structure Corporation (1994). MSC/AFC Diffractometer Control Software MSC, The Woodlands, Texas, USA.
  • Molecular Structure Corporation (1997). TEXSAN for Windows MSC, The Woodlands, Texas, USA.
  • Nadzhafov, G. N., Shnulin, A. N. & Mamedov, Kh. S. (1981). Zh. Strukt. Khim.22, 124–128.
  • Necefoğlu, H., Hökelek, T., Ersanlı, C. C. & Erdönmez, A. (2002). Acta Cryst. E58, m758–m761.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography