PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 January 1; 65(Pt 1): m107.
Published online 2008 December 20. doi:  10.1107/S1600536808042529
PMCID: PMC2968011

Diaqua­(5-methyl­pyrazine-2-carboxyl­ato-κ2 N 1,O)iron(II)

Abstract

In the neutral title complex, [Fe(C6H5N2O2)2(H2O)2], the coordination geometry aound the FeII atom, which lies on an inversion centre, is distorted octa­hedral comprising two N atoms and two O atoms from two 5-methyl­pyrazine-2-carboxyl­ate ligands, and two water mol­ecules. The crystal structure is stabilized by a network of O—H(...)O hydrogen bonds, resulting in a two-dimensional supra­molecular structure.

Related literature

For background to this study, see: Fan et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m107-scheme1.jpg

Experimental

Crystal data

  • [Fe(C6H5N2O2)2(H2O)2]
  • M r = 366.12
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m107-efi1.jpg
  • a = 5.068 (1) Å
  • b = 6.401 (1) Å
  • c = 12.381 (1) Å
  • α = 103.851 (2)°
  • β = 91.790(10)°
  • γ = 108.340 (2)°
  • V = 368.22 (10) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 1.06 mm−1
  • T = 298 (2) K
  • 0.18 × 0.09 × 0.05 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.832, T max = 0.949
  • 1916 measured reflections
  • 1260 independent reflections
  • 1061 reflections with I > 2σ(I)
  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.095
  • S = 1.00
  • 1260 reflections
  • 107 parameters
  • H-atom parameters constrained
  • Δρmax = 0.33 e Å−3
  • Δρmin = −0.28 e Å−3

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT (Bruker, 2002 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808042529/ng2527sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808042529/ng2527Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We gratefully acknowledge the Special Research Fund of Xianyang Normal University for Talent Introduction (08XSYK305) and the Financial Support Fund from the Education Department of Shaanxi Province (No. 07JK424).

supplementary crystallographic information

Comment

The background to this study is set out in the preceding paper (Fan et al., 2007). Here we report the crystal structure of a mononuclear FeII (Fig. 1).

The asymmetric unit consists of a FeII atom, which lies on an inversion centre, one 2mpac ligand and two water molecules. A ring nitrogen atom and an oxygen atom of the carboxylate group from 2mpac ligand with Fe1—O1 = 2.103 (2) Å and Fe1—N1 = 2.167 (3) Å are involved in coordination to the FeII atom; these form a square. The coordination of the two water molecules with Fe1—O3 = 2.114 (2) Å occupied the axial sites results in the formation of a distorted octahedral geometry.

In the crystal structure, hydrogen bonding interactions are observed between the hydrogen atoms of the coordinated water molecules and the oxygen atoms of the carboxyl groups of a neighbouring unit, affording a two-dimensional supramolecular structure (Figure 2).

Experimental

The title compound was obtained from the mixture of ferrous ammonium sulfate hexahydrate(0.10 g, 0.25 mmol), 5-methylpyrazine-2-carboxylic acid (0.70 g, 0.5 mmol) and distilled water (20 ml), which was placed at room temperature for two weeks and red single crystals were obtained finally.

Refinement

All H atoms attached to C atoms from the organic ligands were generated in idealized positions and constrained to ride on their parent atoms, with d(C—H) = 0.93 Å, Uiso=1.2Ueq (C) for aromatic and 0.96 Å, Uiso = 1.5Ueq (C) for CH3 atoms.

Figures

Fig. 1.
A view of the molecular structure of title complex with the atom-labling scheme. Displacement ellipsoids are drawn at the 30% probability level. Symmetry code for A: 1-X, 1-Y, 1-Z.
Fig. 2.
Two-dimensional supramolecular structure of the title complex.

Crystal data

[Fe(C6H5N2O2)2(H2O)2]Z = 1
Mr = 366.12F(000) = 188
Triclinic, P1Dx = 1.651 Mg m3
a = 5.068 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 6.401 (1) ÅCell parameters from 715 reflections
c = 12.3810 (12) Åθ = 3.4–26.8°
α = 103.851 (2)°µ = 1.06 mm1
β = 91.079 (1)°T = 298 K
γ = 108.340 (2)°Block, red
V = 368.22 (10) Å30.18 × 0.09 × 0.05 mm

Data collection

Bruker SMART CCD area-detector diffractometer1260 independent reflections
Radiation source: fine-focus sealed tube1061 reflections with I > 2σ(I)
graphiteRint = 0.025
[var phi] and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −5→6
Tmin = 0.832, Tmax = 0.949k = −7→7
1916 measured reflectionsl = −14→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.0456P)2] where P = (Fo2 + 2Fc2)/3
1260 reflections(Δ/σ)max < 0.001
107 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = −0.28 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Fe10.50000.50000.50000.0326 (3)
N10.5923 (6)0.4742 (4)0.3281 (2)0.0323 (7)
N20.6791 (7)0.4921 (6)0.1096 (2)0.0508 (8)
O10.3162 (5)0.7203 (4)0.45178 (18)0.0359 (6)
O20.2550 (5)0.8729 (4)0.3133 (2)0.0472 (7)
O30.8721 (5)0.7772 (4)0.56033 (19)0.0423 (6)
H3A1.01210.79750.52260.051*
H3B0.87010.90770.59610.051*
C10.3463 (7)0.7489 (5)0.3543 (3)0.0330 (8)
C20.5049 (7)0.6138 (5)0.2826 (3)0.0313 (8)
C30.5494 (8)0.6191 (7)0.1744 (3)0.0482 (10)
H30.48560.71670.14450.058*
C40.7211 (7)0.3461 (6)0.2642 (3)0.0360 (8)
H40.78550.24870.29400.043*
C50.7624 (7)0.3530 (6)0.1548 (3)0.0394 (8)
C60.9003 (9)0.2011 (7)0.0829 (3)0.0582 (11)
H6A0.76000.07220.03470.087*
H6B1.00590.14950.12970.087*
H6C1.02320.28470.03840.087*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Fe10.0405 (5)0.0352 (4)0.0282 (4)0.0197 (3)0.0122 (3)0.0092 (3)
N10.0366 (16)0.0321 (16)0.0329 (15)0.0170 (13)0.0109 (12)0.0089 (13)
N20.064 (2)0.068 (2)0.0329 (17)0.0347 (19)0.0192 (15)0.0171 (17)
O10.0419 (14)0.0395 (14)0.0356 (14)0.0238 (11)0.0170 (10)0.0118 (11)
O20.0649 (18)0.0445 (16)0.0469 (15)0.0355 (14)0.0114 (12)0.0151 (13)
O30.0427 (15)0.0346 (14)0.0527 (16)0.0186 (12)0.0178 (11)0.0082 (12)
C10.0330 (19)0.0275 (18)0.037 (2)0.0099 (15)0.0054 (14)0.0044 (15)
C20.0337 (19)0.0296 (18)0.0322 (19)0.0137 (15)0.0061 (14)0.0066 (15)
C30.063 (3)0.059 (3)0.038 (2)0.035 (2)0.0160 (18)0.020 (2)
C40.039 (2)0.037 (2)0.039 (2)0.0206 (16)0.0122 (16)0.0104 (16)
C50.038 (2)0.047 (2)0.0333 (19)0.0198 (17)0.0102 (15)0.0036 (17)
C60.065 (3)0.063 (3)0.047 (2)0.030 (2)0.019 (2)−0.001 (2)

Geometric parameters (Å, °)

Fe1—O1i2.103 (2)O3—H3A0.8500
Fe1—O12.103 (2)O3—H3B0.8499
Fe1—O3i2.114 (2)C1—C21.510 (5)
Fe1—O32.114 (2)C2—C31.369 (5)
Fe1—N1i2.167 (3)C3—H30.9300
Fe1—N12.167 (3)C4—C51.384 (5)
N1—C41.331 (4)C4—H40.9300
N1—C21.339 (4)C5—C61.505 (5)
N2—C51.323 (4)C6—H6A0.9600
N2—C31.335 (5)C6—H6B0.9600
O1—C11.268 (4)C6—H6C0.9600
O2—C11.232 (4)
O1i—Fe1—O1180.00 (11)H3A—O3—H3B107.6
O1i—Fe1—O3i89.75 (9)O2—C1—O1126.0 (3)
O1—Fe1—O3i90.25 (9)O2—C1—C2117.9 (3)
O1i—Fe1—O390.25 (9)O1—C1—C2116.0 (3)
O1—Fe1—O389.75 (9)N1—C2—C3119.7 (3)
O3i—Fe1—O3180.00 (10)N1—C2—C1116.5 (3)
O1i—Fe1—N1i77.21 (9)C3—C2—C1123.7 (3)
O1—Fe1—N1i102.79 (9)N2—C3—C2123.6 (3)
O3i—Fe1—N1i92.02 (9)N2—C3—H3118.2
O3—Fe1—N1i87.98 (9)C2—C3—H3118.2
O1i—Fe1—N1102.79 (9)N1—C4—C5122.1 (3)
O1—Fe1—N177.21 (9)N1—C4—H4118.9
O3i—Fe1—N187.98 (9)C5—C4—H4118.9
O3—Fe1—N192.02 (9)N2—C5—C4121.0 (3)
N1i—Fe1—N1180.000 (1)N2—C5—C6117.8 (3)
C4—N1—C2117.2 (3)C4—C5—C6121.2 (3)
C4—N1—Fe1130.3 (2)C5—C6—H6A109.5
C2—N1—Fe1112.5 (2)C5—C6—H6B109.5
C5—N2—C3116.3 (3)H6A—C6—H6B109.5
C1—O1—Fe1117.6 (2)C5—C6—H6C109.5
Fe1—O3—H3A121.1H6A—C6—H6C109.5
Fe1—O3—H3B121.9H6B—C6—H6C109.5
O1i—Fe1—N1—C42.7 (3)C4—N1—C2—C30.2 (5)
O1—Fe1—N1—C4−177.3 (3)Fe1—N1—C2—C3179.5 (3)
O3i—Fe1—N1—C4−86.6 (3)C4—N1—C2—C1177.0 (3)
O3—Fe1—N1—C493.4 (3)Fe1—N1—C2—C1−3.7 (3)
N1i—Fe1—N1—C4131 (100)O2—C1—C2—N1−177.5 (3)
O1i—Fe1—N1—C2−176.5 (2)O1—C1—C2—N11.4 (4)
O1—Fe1—N1—C23.5 (2)O2—C1—C2—C3−0.9 (5)
O3i—Fe1—N1—C294.2 (2)O1—C1—C2—C3178.0 (3)
O3—Fe1—N1—C2−85.8 (2)C5—N2—C3—C21.1 (6)
N1i—Fe1—N1—C2−48 (100)N1—C2—C3—N2−0.5 (6)
O1i—Fe1—O1—C129 (100)C1—C2—C3—N2−177.0 (3)
O3i—Fe1—O1—C1−90.8 (2)C2—N1—C4—C5−0.6 (5)
O3—Fe1—O1—C189.2 (2)Fe1—N1—C4—C5−179.8 (2)
N1i—Fe1—O1—C1177.1 (2)C3—N2—C5—C4−1.5 (5)
N1—Fe1—O1—C1−2.9 (2)C3—N2—C5—C6177.9 (3)
Fe1—O1—C1—O2−179.3 (3)N1—C4—C5—N21.3 (5)
Fe1—O1—C1—C21.9 (4)N1—C4—C5—C6−178.0 (3)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H3A···O1ii0.851.932.720 (3)155
O3—H3B···O2iii0.851.862.673 (3)159

Symmetry codes: (ii) x+1, y, z; (iii) −x+1, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2527).

References

  • Bruker (2002). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Fan, G., Chen, S.-P. & Gao, S.-L. (2007). Acta Cryst. E63, m772–m773.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography