PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 January 1; 65(Pt 1): m100–m101.
Published online 2008 December 20. doi:  10.1107/S1600536808041299
PMCID: PMC2968006

{μ-N,N′-Bis[1-(2-pyridyl)ethylidene]benzene-1,2-diamine}di-μ-chlorido-bis[diaquanickel(II)] dichloride ethanol disolvate

Abstract

In the title compound, [Ni2Cl2(C20H18N4)(H2O)4]Cl2·2C2H6O, the coordination environment of each Ni2+ ion is distorted octa­hedral formed by two N atoms from the Schiff base ligand, two O atoms from water mol­ecules and two chloride anions acting as μ2 bridges between the metal ions. The coordinated water mol­ecules are linked to the uncoordinated ethanol mol­ecules and chloride anions by O—H(...)O and O—H(...)Cl hydrogen bonds, although the assignment of some of these is tentative. A weak inter­molecular O—H(...)N inter­action within the ligand is also observed.

Related literature

For related structures, see: Kelly et al. (2005 [triangle]); Garoufis et al. (1998 [triangle]); Li et al. (2005 [triangle]); Deters et al. (2005 [triangle]); Sengottuvelan et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m100-scheme1.jpg

Experimental

Crystal data

  • [Ni2Cl2(C20H18N4)(H2O)4]Cl2·2C2H6O
  • M r = 737.80
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m100-efi1.jpg
  • a = 13.078 (2) Å
  • b = 13.575 (2) Å
  • c = 17.873 (4) Å
  • V = 3173.06 (10) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.57 mm−1
  • T = 173 (2) K
  • 0.14 × 0.12 × 0.10 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: none
  • 13155 measured reflections
  • 8765 independent reflections
  • 6892 reflections with I > 2σ(I)

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.096
  • S = 1.04
  • 8765 reflections
  • 385 parameters
  • 8 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.61 e Å−3
  • Δρmin = −0.63 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 3623 Friedel pairs
  • Flack parameter: 0.005 (12)

Data collection: COLLECT (Nonius, 1998 [triangle]); cell refinement: DENZO (Nonius, 1998 [triangle]); data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808041299/hb2846sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808041299/hb2846Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Agence Universitaire de la Francophonie for financial support (AUF-PSCI No. 6314PS804).

supplementary crystallographic information

Comment

The structure of the title compound, (I), is shown in Fig. 1. In the complex, the ligand coordinates the two metal ions via the two imine N atoms and the two pyridyl nitrogen atoms (one of each type per metal ion). Each metal ion is coordinated by two oxygen atoms from water molecules and two chloride anions (Table 1). Thus, the metal ions are in facial N2O2Cl2 coordination environments and are connected by two chloride anions bridges to yield a binuclear complex. The Ni···Ni distance spanned by the two chloride ion bridges is 3.9615 (16) Å. The Ni—Cl distances in (I) are longer than distances observed in other NiII coordination complexes (Li et al., 2005; Deters et al., 2005; Sengottuvelan et al., 2008). Two chloride ions are present in the asymmetric unit to compensate for the doubly positive charge of the complex and hydrogen bonds (Table 2) help to establish the packing.

Experimental

To a mixture of 1 g (9.2 mmol) 1,2-diaminobenzene and 100 ml of ethanol was added dropwise a solution of 2.24 g (18.46 mmol) of 2-acetylpyridine. The resulting mixture was stirred under reflux for 60 min. A solution of 2.19 g (9.2 mmol) of NiCl2.6H2O was added. After cooling the solution was filtered and the solvent evaporated to dryness. The resulting yellow solid was recrystallized by diffusion of toluene in the ethanolic solution of the compound and green prisms of (I) were obtained (5.2 g; 75.00°) after one week. IR (cm-1,KBr): 3372, 1595, 1570. Analysis calculated for C24H38Cl4N4O6Ni2: C 39.07, H 5.19, N 7.59 °; found: C 39.01, H 5.21, N 7.60 °.

Refinement

The water H atoms were located from difference maps and refined with distance restraints of 0.96±0.02Å. The other H atoms were placed geometrically (C—H = 0.95–0.99Å, O—H = 0.84Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C, O). The refinement scheme has led to some very short intermolecular H···H contacts and the location of the water H atoms should be regarded as less certain.

Figures

Fig. 1.
The molecular structure of (I) with displacement ellipsoids for the nno-hydrogen atoms plotted at the 50% probability level.
Fig. 2.
The packing for (I): the broken lines stand for hydrogen bonds.

Crystal data

[Ni2Cl2(C20H18N4)(H2O)4]Cl2·2C2H6OF(000) = 1528
Mr = 737.80Dx = 1.544 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 5114 reflections
a = 13.078 (2) Åθ = 1.0–30.0°
b = 13.575 (2) ŵ = 1.57 mm1
c = 17.873 (4) ÅT = 173 K
V = 3173.06 (10) Å3Prism, green
Z = 40.14 × 0.12 × 0.10 mm

Data collection

KappaCCD diffractometer6892 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.0000
graphiteθmax = 30.0°, θmin = 3.2°
π and ω scansh = −18→18
13155 measured reflectionsk = −19→19
8765 independent reflectionsl = −25→25

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.096w = 1/[σ2(Fo2) + (0.0393P)2 + 1.0903P] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.006
8765 reflectionsΔρmax = 0.61 e Å3
385 parametersΔρmin = −0.62 e Å3
8 restraintsAbsolute structure: Flack (1983), 3623 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.005 (12)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement on F2 for ALL reflections except for 0 with very negative F2 or flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating _R_factor_obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni10.35695 (3)0.50399 (3)0.39085 (2)0.01943 (9)
Ni20.61577 (3)0.50829 (3)0.40432 (2)0.01891 (9)
Cl10.48398 (6)0.39219 (5)0.44251 (5)0.02207 (16)
Cl20.48535 (6)0.62991 (5)0.39662 (5)0.02335 (17)
Cl30.28973 (9)0.25896 (7)−0.01232 (6)0.0461 (3)
Cl40.08115 (8)0.53903 (7)0.24677 (6)0.0400 (2)
O10.30614 (18)0.53214 (16)0.49855 (13)0.0255 (5)
HW1A0.351 (3)0.519 (3)0.5344 (18)0.050*
HW1B0.279 (3)0.5959 (17)0.497 (2)0.050*
O20.25390 (18)0.60814 (18)0.35001 (14)0.0256 (6)
HW2A0.228 (3)0.645 (3)0.3889 (18)0.050*
HW2B0.200 (2)0.587 (3)0.319 (2)0.050*
O30.64419 (18)0.53720 (16)0.51712 (13)0.0245 (5)
HW3A0.588 (2)0.535 (3)0.549 (2)0.050*
HW3B0.660 (3)0.6031 (15)0.517 (2)0.050*
O40.72880 (18)0.61205 (17)0.37763 (14)0.0253 (5)
HW4A0.7962 (17)0.594 (3)0.370 (2)0.050*
HW4B0.743 (3)0.651 (3)0.4184 (17)0.050*
O50.03498 (19)0.43711 (17)0.09927 (15)0.0345 (6)
H1A0.07550.45090.06440.050*
O60.0747 (2)0.0506 (3)0.1231 (2)0.0660 (10)
H2A0.13200.02460.11550.050*
N10.2552 (2)0.3885 (2)0.37723 (17)0.0229 (6)
N20.38534 (19)0.46316 (17)0.28105 (15)0.0190 (5)
N30.60457 (19)0.46709 (18)0.29271 (15)0.0193 (6)
N40.71873 (19)0.39336 (18)0.39947 (16)0.0197 (5)
C10.1904 (3)0.3521 (3)0.4284 (2)0.0299 (8)
H10.18730.38250.47620.036*
C20.1276 (3)0.2716 (3)0.4140 (2)0.0355 (9)
H20.08240.24760.45140.043*
C30.1321 (3)0.2272 (3)0.3446 (2)0.0348 (9)
H30.08990.17220.33340.042*
C40.1993 (3)0.2642 (2)0.2912 (2)0.0282 (8)
H40.20340.23500.24300.034*
C50.2603 (2)0.3446 (2)0.3093 (2)0.0227 (7)
C60.3333 (2)0.3895 (2)0.25517 (19)0.0246 (7)
C70.3406 (3)0.3484 (3)0.1785 (2)0.0370 (9)
H7A0.27760.36310.15100.056*
H7B0.34990.27680.18140.056*
H7C0.39900.37790.15260.056*
C80.4461 (2)0.5215 (2)0.23195 (18)0.0206 (7)
C90.3971 (3)0.5831 (2)0.1807 (2)0.0271 (8)
H90.32500.57990.17510.032*
C100.4531 (3)0.6488 (2)0.1380 (2)0.0291 (8)
H100.41920.69190.10430.035*
C110.5586 (3)0.6515 (3)0.1445 (2)0.0296 (8)
H110.59720.69620.11490.036*
C120.6079 (3)0.5888 (2)0.1942 (2)0.0274 (8)
H120.68040.58990.19810.033*
C130.5517 (2)0.5246 (2)0.23829 (18)0.0205 (7)
C140.6560 (2)0.3905 (2)0.27341 (19)0.0237 (7)
C150.6549 (3)0.3448 (3)0.1975 (2)0.0386 (10)
H15A0.64860.27310.20230.058*
H15B0.71870.36070.17130.058*
H15C0.59680.37050.16890.058*
C160.7215 (2)0.3468 (2)0.33302 (19)0.0211 (7)
C170.7835 (3)0.2657 (2)0.3212 (2)0.0266 (8)
H170.78580.23450.27360.032*
C180.8422 (3)0.2308 (2)0.3800 (2)0.0314 (8)
H180.88470.17480.37340.038*
C190.8382 (3)0.2780 (3)0.4480 (2)0.0324 (8)
H190.87800.25500.48890.039*
C200.7753 (3)0.3597 (2)0.4559 (2)0.0267 (8)
H200.77250.39240.50280.032*
C21−0.0361 (4)0.3042 (3)0.1739 (3)0.0508 (12)
H21A−0.03400.23280.18170.076*
H21B−0.10560.32410.16030.076*
H21C−0.01580.33780.22010.076*
C220.0361 (3)0.3317 (3)0.1123 (2)0.0417 (10)
H22A0.10620.31070.12580.050*
H22B0.01630.29690.06580.050*
C230.0117 (4)0.0366 (4)0.0593 (3)0.0704 (15)
H23A−0.05610.06620.06940.084*
H23B0.0015−0.03500.05180.084*
C240.0527 (4)0.0792 (4)−0.0104 (3)0.0676 (15)
H24A0.03950.1503−0.01110.101*
H24B0.01930.0482−0.05340.101*
H24C0.12660.0675−0.01290.101*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.02046 (19)0.01869 (19)0.0192 (2)−0.00053 (16)0.00040 (15)−0.00077 (17)
Ni20.02056 (19)0.01757 (18)0.0186 (2)0.00017 (16)−0.00013 (15)−0.00029 (17)
Cl10.0228 (4)0.0177 (3)0.0257 (4)−0.0007 (3)0.0004 (3)0.0026 (3)
Cl20.0246 (4)0.0183 (3)0.0272 (4)0.0005 (3)−0.0005 (4)−0.0005 (3)
Cl30.0681 (7)0.0345 (5)0.0358 (6)0.0194 (5)0.0085 (5)0.0105 (4)
Cl40.0453 (6)0.0444 (5)0.0303 (5)−0.0074 (4)−0.0043 (4)−0.0064 (4)
O10.0302 (13)0.0273 (12)0.0188 (13)0.0035 (10)−0.0009 (10)−0.0024 (10)
O20.0262 (14)0.0255 (12)0.0252 (15)0.0027 (10)−0.0005 (11)−0.0031 (10)
O30.0289 (13)0.0241 (11)0.0206 (13)−0.0015 (10)0.0005 (10)−0.0034 (9)
O40.0261 (12)0.0250 (12)0.0250 (14)−0.0031 (10)0.0020 (11)0.0021 (10)
O50.0393 (15)0.0381 (13)0.0259 (14)−0.0034 (11)0.0030 (12)0.0069 (11)
O60.0325 (16)0.109 (3)0.056 (2)−0.0077 (17)−0.0038 (16)0.001 (2)
N10.0230 (15)0.0211 (13)0.0246 (16)0.0015 (11)−0.0007 (12)0.0003 (12)
N20.0198 (13)0.0165 (12)0.0208 (14)0.0000 (10)0.0017 (11)0.0008 (10)
N30.0207 (13)0.0199 (13)0.0172 (14)−0.0013 (10)0.0008 (11)−0.0003 (10)
N40.0204 (13)0.0178 (12)0.0209 (15)0.0001 (10)0.0009 (12)0.0026 (11)
C10.0251 (18)0.0332 (18)0.032 (2)−0.0022 (15)0.0035 (16)0.0010 (16)
C20.026 (2)0.0381 (19)0.042 (2)−0.0064 (16)0.0056 (17)0.0087 (17)
C30.031 (2)0.0239 (17)0.049 (3)−0.0091 (16)−0.0048 (19)0.0004 (16)
C40.0275 (18)0.0246 (17)0.032 (2)−0.0016 (15)−0.0048 (16)−0.0004 (15)
C50.0212 (17)0.0207 (16)0.0264 (19)0.0012 (13)0.0000 (14)0.0026 (14)
C60.0275 (18)0.0236 (16)0.0226 (18)0.0038 (14)−0.0018 (14)−0.0021 (14)
C70.047 (2)0.037 (2)0.027 (2)−0.0130 (18)0.0027 (18)−0.0100 (16)
C80.0257 (16)0.0181 (15)0.0180 (16)−0.0008 (12)0.0016 (13)0.0004 (12)
C90.0247 (18)0.0272 (17)0.029 (2)0.0040 (14)−0.0031 (15)0.0005 (14)
C100.038 (2)0.0267 (17)0.0228 (19)0.0036 (15)−0.0013 (16)0.0075 (14)
C110.038 (2)0.0268 (17)0.024 (2)−0.0041 (15)0.0027 (16)0.0071 (14)
C120.0257 (18)0.0294 (17)0.0270 (19)−0.0030 (14)0.0017 (15)0.0016 (14)
C130.0257 (16)0.0183 (15)0.0176 (16)−0.0007 (12)0.0001 (13)−0.0016 (12)
C140.0236 (17)0.0240 (16)0.0235 (18)−0.0021 (14)0.0036 (14)−0.0023 (13)
C150.046 (2)0.044 (2)0.025 (2)0.0153 (19)−0.0069 (18)−0.0112 (17)
C160.0203 (16)0.0211 (15)0.0220 (18)−0.0013 (13)0.0003 (14)0.0006 (13)
C170.0283 (19)0.0249 (17)0.026 (2)0.0004 (14)0.0017 (15)−0.0005 (14)
C180.0305 (19)0.0247 (16)0.039 (2)0.0076 (14)0.0005 (17)0.0000 (16)
C190.0262 (19)0.0327 (19)0.038 (2)0.0077 (15)−0.0058 (17)0.0054 (16)
C200.0284 (18)0.0288 (17)0.0230 (19)0.0004 (14)−0.0031 (15)0.0018 (14)
C210.053 (3)0.049 (2)0.050 (3)−0.010 (2)−0.002 (2)0.015 (2)
C220.044 (2)0.038 (2)0.044 (3)0.0019 (17)0.000 (2)0.0052 (18)
C230.042 (3)0.099 (4)0.070 (4)−0.009 (3)−0.003 (3)−0.013 (3)
C240.065 (3)0.096 (4)0.042 (3)−0.011 (3)0.007 (3)−0.001 (3)

Geometric parameters (Å, °)

Ni1—N12.071 (3)C5—C61.490 (5)
Ni1—N22.073 (3)C6—C71.482 (5)
Ni1—O12.072 (2)C7—H7A0.9800
Ni1—O22.085 (2)C7—H7B0.9800
Ni1—Cl22.3985 (8)C7—H7C0.9800
Ni1—Cl12.4323 (8)C8—C131.386 (4)
Ni2—N42.063 (2)C8—C91.396 (4)
Ni2—N32.077 (3)C9—C101.384 (5)
Ni2—O32.087 (2)C9—H90.9500
Ni2—O42.097 (2)C10—C111.385 (5)
Ni2—Cl22.3778 (8)C10—H100.9500
Ni2—Cl12.4331 (8)C11—C121.390 (5)
O1—HW1A0.888 (19)C11—H110.9500
O1—HW1B0.934 (18)C12—C131.386 (4)
O2—HW2A0.916 (19)C12—H120.9500
O2—HW2B0.942 (19)C14—C161.490 (5)
O3—HW3A0.939 (19)C14—C151.493 (5)
O3—HW3B0.919 (18)C15—H15A0.9800
O4—HW4A0.922 (19)C15—H15B0.9800
O4—HW4B0.921 (19)C15—H15C0.9800
O5—C221.450 (4)C16—C171.384 (5)
O5—H1A0.8400C17—C181.385 (5)
O6—C231.418 (6)C17—H170.9500
O6—H2A0.8400C18—C191.374 (5)
N1—C11.340 (4)C18—H180.9500
N1—C51.354 (5)C19—C201.389 (5)
N2—C61.295 (4)C19—H190.9500
N2—C81.424 (4)C20—H200.9500
N3—C141.285 (4)C21—C221.498 (6)
N3—C131.426 (4)C21—H21A0.9800
N4—C201.332 (4)C21—H21B0.9800
N4—C161.346 (4)C21—H21C0.9800
C1—C21.391 (5)C22—H22A0.9900
C1—H10.9500C22—H22B0.9900
C2—C31.381 (6)C23—C241.475 (7)
C2—H20.9500C23—H23A0.9900
C3—C41.390 (5)C23—H23B0.9900
C3—H30.9500C24—H24A0.9800
C4—C51.390 (5)C24—H24B0.9800
C4—H40.9500C24—H24C0.9800
N1—Ni1—O192.45 (11)N2—C6—C5114.9 (3)
N1—Ni1—N278.55 (11)C7—C6—C5119.2 (3)
O1—Ni1—N2170.54 (10)C6—C7—H7A109.5
N1—Ni1—O293.27 (10)C6—C7—H7B109.5
O1—Ni1—O289.59 (9)H7A—C7—H7B109.5
N2—Ni1—O288.03 (10)C6—C7—H7C109.5
N1—Ni1—Cl2174.04 (8)H7A—C7—H7C109.5
O1—Ni1—Cl293.04 (7)H7B—C7—H7C109.5
N2—Ni1—Cl296.08 (7)C13—C8—C9119.5 (3)
O2—Ni1—Cl289.10 (7)C13—C8—N2121.5 (3)
N1—Ni1—Cl190.64 (8)C9—C8—N2118.8 (3)
O1—Ni1—Cl188.94 (7)C10—C9—C8120.4 (3)
N2—Ni1—Cl194.02 (7)C10—C9—H9119.8
O2—Ni1—Cl1175.89 (7)C8—C9—H9119.8
Cl2—Ni1—Cl187.14 (3)C9—C10—C11119.8 (3)
N4—Ni2—N378.58 (11)C9—C10—H10120.1
N4—Ni2—O393.82 (10)C11—C10—H10120.1
N3—Ni2—O3172.26 (10)C10—C11—C12120.0 (3)
N4—Ni2—O492.20 (9)C10—C11—H11120.0
N3—Ni2—O490.69 (10)C12—C11—H11120.0
O3—Ni2—O488.16 (9)C13—C12—C11120.2 (3)
N4—Ni2—Cl2172.31 (8)C13—C12—H12119.9
N3—Ni2—Cl294.64 (7)C11—C12—H12119.9
O3—Ni2—Cl293.04 (7)C12—C13—C8120.1 (3)
O4—Ni2—Cl291.50 (7)C12—C13—N3118.3 (3)
N4—Ni2—Cl189.10 (7)C8—C13—N3121.5 (3)
N3—Ni2—Cl192.58 (7)N3—C14—C16115.5 (3)
O3—Ni2—Cl188.68 (7)N3—C14—C15125.1 (3)
O4—Ni2—Cl1176.66 (8)C16—C14—C15119.3 (3)
Cl2—Ni2—Cl187.59 (3)C14—C15—H15A109.5
Ni1—Cl1—Ni288.46 (3)C14—C15—H15B109.5
Ni2—Cl2—Ni190.56 (3)H15A—C15—H15B109.5
Ni1—O1—HW1A115 (3)C14—C15—H15C109.5
Ni1—O1—HW1B106 (3)H15A—C15—H15C109.5
HW1A—O1—HW1B116 (4)H15B—C15—H15C109.5
Ni1—O2—HW2A110 (3)N4—C16—C17121.6 (3)
Ni1—O2—HW2B119 (2)N4—C16—C14115.4 (3)
HW2A—O2—HW2B110 (4)C17—C16—C14123.0 (3)
Ni2—O3—HW3A117 (3)C16—C17—C18118.7 (3)
Ni2—O3—HW3B102 (3)C16—C17—H17120.7
HW3A—O3—HW3B103 (3)C18—C17—H17120.7
Ni2—O4—HW4A122 (3)C19—C18—C17119.5 (3)
Ni2—O4—HW4B110 (3)C19—C18—H18120.3
HW4A—O4—HW4B94 (3)C17—C18—H18120.3
C22—O5—H1A109.5C18—C19—C20119.0 (3)
C23—O6—H2A109.5C18—C19—H19120.5
C1—N1—C5118.8 (3)C20—C19—H19120.5
C1—N1—Ni1127.2 (2)N4—C20—C19121.7 (3)
C5—N1—Ni1114.0 (2)N4—C20—H20119.1
C6—N2—C8120.2 (3)C19—C20—H20119.1
C6—N2—Ni1116.8 (2)C22—C21—H21A109.5
C8—N2—Ni1122.33 (19)C22—C21—H21B109.5
C14—N3—C13120.9 (3)H21A—C21—H21B109.5
C14—N3—Ni2116.0 (2)C22—C21—H21C109.5
C13—N3—Ni2122.83 (19)H21A—C21—H21C109.5
C20—N4—C16119.5 (3)H21B—C21—H21C109.5
C20—N4—Ni2126.2 (2)O5—C22—C21111.0 (3)
C16—N4—Ni2114.2 (2)O5—C22—H22A109.4
N1—C1—C2122.5 (3)C21—C22—H22A109.4
N1—C1—H1118.8O5—C22—H22B109.4
C2—C1—H1118.8C21—C22—H22B109.4
C3—C2—C1118.9 (3)H22A—C22—H22B108.0
C3—C2—H2120.6O6—C23—C24114.5 (4)
C1—C2—H2120.6O6—C23—H23A108.6
C2—C3—C4119.1 (3)C24—C23—H23A108.6
C2—C3—H3120.5O6—C23—H23B108.6
C4—C3—H3120.5C24—C23—H23B108.6
C5—C4—C3119.1 (3)H23A—C23—H23B107.6
C5—C4—H4120.5C23—C24—H24A109.5
C3—C4—H4120.5C23—C24—H24B109.5
N1—C5—C4121.7 (3)H24A—C24—H24B109.5
N1—C5—C6115.8 (3)C23—C24—H24C109.5
C4—C5—C6122.5 (3)H24A—C24—H24C109.5
N2—C6—C7126.0 (3)H24B—C24—H24C109.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—HW1A···O5i0.89 (2)1.98 (3)2.781 (3)150 (4)
O1—HW1B···Cl3i0.93 (2)2.17 (2)3.107 (2)176 (4)
O2—HW2A···Cl3i0.92 (2)2.21 (2)3.104 (3)165 (4)
O2—HW2B···Cl40.94 (2)2.12 (2)3.064 (3)179 (4)
O3—HW3A···O5i0.94 (2)1.87 (2)2.787 (3)163 (4)
O3—HW3B···Cl3ii0.92 (2)2.22 (2)3.133 (2)176 (4)
O4—HW4A···O6ii0.92 (2)1.79 (2)2.702 (4)168 (4)
O4—HW4B···Cl3ii0.92 (2)2.27 (2)3.136 (3)157 (4)
O5—H1A···O1iii0.841.962.781 (3)166
O6—H2A···O4iv0.842.182.702 (4)121
O6—H2A···N4iv0.842.663.467 (4)163

Symmetry codes: (i) −x+1/2, −y+1, z+1/2; (ii) −x+1, y+1/2, −z+1/2; (iii) −x+1/2, −y+1, z−1/2; (iv) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2846).

References

  • Deters, E. A., Goldcamp, M. J., Krause Bauer, J. A. & Baldwin, M. J. (2005). Inorg. Chem.44, 5222–5228. [PubMed]
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Garoufis, A., Kasselouri, S., Raptopoulou, C. P. & Terzis, A. (1998). Polyhedron, 17, 1–7.
  • Kelly, T. L., Milway, V. A., Grove, H., Niel, V., Abedin, T. S. M., Thompson, L. K., Zhao, L., Harvey, R. G., Miller, D. O., Leech, M., Goeta, A. E. & Howard, J. A. K. (2005). Polyhedron, 24, 807–821.
  • Li, Q. X., Luo, Q. H., Li, Y. Z., Duan, C. Y. & Tu, O. Y. (2005). Inorg. Chim. Acta, 358, 504–512.
  • Nonius (1998). COLLECT and DENZO Nonius BV, Delft, The Netherlands.
  • Sengottuvelan, N., Kang, S. K. & Kim, Y.-I. (2008). Bull. Korean Chem. Soc.29, 1784–1786.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography