PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 January 1; 65(Pt 1): o96.
Published online 2008 December 13. doi:  10.1107/S1600536808040373
PMCID: PMC2968003

(+)-(S,S)-1,3-Bis[(tetra­hydro­furan-2-yl)­meth­yl]thio­urea

Abstract

The title compound, C11H20N2O2S, is an enanti­omerically pure heterocycle-substituted thio­urea synthesized under solvent-free conditions. The thio­urea unit adopts a ZZ conformation, with the HN—(C=S)—NH core almost planar and the tetra­hydro­furfuryl groups placed below and above this plane. The whole mol­ecule thus approximates to noncrystallographic C 2 symmetry. Unexpectedly, the C=S group is not involved in inter­molecular hydrogen bonding, as generally observed in homodisubstituted thioureas. Instead, mol­ecules form a one-dimensional network based on weak N—H(...)O(heterocycle) hydrogen bonding, resulting in a zigzag ribbon-like structure around the crystallographic 21 screw axis along [100].

Related literature

For general background about solvent-free synthesis, see: Tanaka & Toda (2000 [triangle]); Jeon et al. (2005 [triangle]). For C 2 homosubstituted thio­ureas, see: Bailey et al. (1997 [triangle]); Lai & Tiekink (2002 [triangle]). For common hydrogen-bonding schemes in thio­ureas, see: Vázquez et al. (2004 [triangle]); Custelcean et al. (2005 [triangle]); Shashidhar et al. (2006 [triangle]); Sadiq-ur-Rehman et al. (2007 [triangle]); Saxena & Pike (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-00o96-scheme1.jpg

Experimental

Crystal data

  • C11H20N2O2S
  • M r = 244.35
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-00o96-efi7.jpg
  • a = 7.8588 (9) Å
  • b = 10.8265 (11) Å
  • c = 15.6196 (16) Å
  • V = 1329.0 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.23 mm−1
  • T = 298 (1) K
  • 0.6 × 0.6 × 0.6 mm

Data collection

  • Siemens P4 diffractometer
  • Absorption correction: ψ scan (XSCANS; Siemens, 1996 [triangle]) T min = 0.782, T max = 0.870
  • 4611 measured reflections
  • 3026 independent reflections
  • 2484 reflections with I > 2σ(I)
  • R int = 0.031
  • 3 standard reflections every 97 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054
  • wR(F 2) = 0.165
  • S = 1.03
  • 3026 reflections
  • 151 parameters
  • 2 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.22 e Å−3
  • Δρmin = −0.16 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1267 Friedel pairs
  • Flack parameter: −0.01 (14)

Data collection: XSCANS (Siemens, 1996 [triangle]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808040373/ci2734sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808040373/ci2734Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Partial support from VIEP-UAP (grant No. GUPJ-NAT08-G) is acknowledged.

supplementary crystallographic information

Comment

The development of straightforward and eco-friendly synthetic procedures remains an important aim in organic synthesis. Many organic solvents, particularly chlorinated hydrocarbons, that are used in large quantities in organic reactions are potential threat to human health and environment. Thus, the design of chemical reactions under solvent-free conditions is getting a renewed interest. In this regard, solvent-free organic syntheses have great applied value and expansive prospects considering their advantages such as high efficiency and selectivity, easy separation and purification and environmental acceptability. All these merits are in accord with the green chemistry's requests of energy-saving, high efficiency and environmentally benign features (Tanaka & Toda, 2000; Jeon et al., 2005). On the other hand, N,N'-disubstituted thioureas have recently received much interest due to their diverse applications, such as, inter alia, antiviral, antituberculous, fungicidal, herbicidal activities, as well as tranquilizing and antidiabetic drugs, agrochemical properties, antioxidants in gasoline, corrosion inhibitors, etc. In view of these and in continuation of our earlier work on the synthesis of thioureas (Vázquez et al., 2004), we synthesized the title compound under solvent-free conditions (see experimental).

The asymmetric unit contains one molecule in general position (Fig. 1). As the amine used as starting material was enantiopure, the thiourea is found to be a pure (S,S) isomer. The central core HN—(C═S)—NH unit is close to be planar, the r.m.s. deviation from the mean plane S1/C1/N2/H2/N12/H12 being 0.039 Å. This core adopts a ZZ conformation (i.e. amine H atoms are arranged syn) and tetrahydrofurfuryl groups are placed below and above the central HN—(C═S)—NH plane. The whole molecule thus approximates a local C2 point symmetry. The observed conformation is identical to that found in other related homosubstituted thioureas (Lai & Tiekink, 2002; Bailey et al., 1997).

The ZZ conformation avoids the formation of intramolecular hydrogen bonds (Saxena & Pike, 2007). Regarding the packing structure, it is clear that the thioketone functionality does not participate in intermolecular contacts. Such a situation is unexpected, since for previously X-ray characterized chiral and non-chiral homosubstituted thioureas, one-dimensional supramolecular structures based on C═S···H—N hydrogen bonds are predominant, providing that the thiourea is in a ZZ conformation (e.g. Vázquez et al., 2004; Custelcean et al., 2005; Shashidhar et al., 2006; Sadiq-ur-Rehman et al., 2007). Instead, the crystal structure of the title compound is determined by weak N—H···O(heterocycle) hydrogen bonds, aggregating molecules in a backbone arrangement (Fig. 2), parallel to the crystallographic 21 screw axis along [100].

Experimental

Under solvent-free conditions, (S)-(+)-tetrahydrofurfurylamine (0.49 g, 4.88 mmol) and CS2 (0.19 g, 2.44 mmol) were mixed at 298 K, giving a white solid. The crude was recrystallized from EtOH, affording colourless crystals of the title compound. Yield 99%; m.p. 376–378 K; [α]25D=+28.7 (c=1, CHCl3). Anal. Calcd for C11H20N2O2S: C 54.07, H 8.25, N 11.46, O 13.10, S 13.12%; found: C 53.12, H 8.18, N 11.30, O 12.98, S 13.87%. Spectroscopic data are in agreement with the X-ray formula (see archived CIF).

Refinement

Methylene and methine H atoms were placed in idealized positions and refined as riding to their carrier C atoms. Amine H atoms, H2 and H12, were found in a difference map and refined with N—H bond lengths restrained to 0.86 (1) Å. For all H atoms, isotropic displacement parameters were calculated as Uiso(H) = 1.2Ueq(carrier atom).

Figures

Fig. 1.
Molecular structure of the title compound, with 30% probability level displacement ellipsoids for non-H atoms.
Fig. 2.
Part of the crystal structure of the title compound, showing the network of N—H···O hydrogen bonds (dashed lines). The 21 screw axis forming the backbone supramolecular structure is shown with a standard symbol, and each ...

Crystal data

C11H20N2O2SDx = 1.221 Mg m3
Mr = 244.35Melting point = 376–378 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 78 reflections
a = 7.8588 (9) Åθ = 4.6–13.7°
b = 10.8265 (11) ŵ = 0.23 mm1
c = 15.6196 (16) ÅT = 298 K
V = 1329.0 (2) Å3Block, colourless
Z = 40.6 × 0.6 × 0.6 mm
F(000) = 528

Data collection

Siemens P4 diffractometer2484 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
graphiteθmax = 27.5°, θmin = 2.3°
2θ/ω scansh = −10→10
Absorption correction: ψ scan (XSCANS; Siemens, 1996)k = −14→14
Tmin = 0.782, Tmax = 0.870l = −20→20
4611 measured reflections3 standard reflections every 97 reflections
3026 independent reflections intensity decay: 1%

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.165w = 1/[σ2(Fo2) + (0.0916P)2 + 0.2186P] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3026 reflectionsΔρmax = 0.22 e Å3
151 parametersΔρmin = −0.16 e Å3
2 restraintsAbsolute structure: Flack (1983), 1267 Friedel pairs
0 constraintsFlack parameter: −0.01 (14)
Primary atom site location: structure-invariant direct methods

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.48959 (12)0.46401 (7)0.34087 (6)0.0889 (3)
C10.4852 (3)0.5875 (2)0.40545 (16)0.0582 (5)
N20.4051 (3)0.6930 (2)0.38410 (17)0.0688 (6)
H20.389 (5)0.752 (2)0.4186 (18)0.083*
C30.3199 (4)0.7142 (4)0.3037 (2)0.0845 (9)
H3A0.37680.66680.25940.101*
H3B0.33030.80090.28890.101*
C40.1361 (4)0.6803 (3)0.30448 (19)0.0750 (8)
H4A0.12250.59520.32480.090*
C50.0534 (7)0.6947 (6)0.2172 (3)0.1303 (19)
H5A0.10880.75910.18420.156*
H5B0.05820.61800.18520.156*
C6−0.1224 (7)0.7283 (7)0.2368 (3)0.146 (2)
H6A−0.16360.78980.19670.175*
H6B−0.19570.65630.23360.175*
C7−0.1204 (6)0.7774 (6)0.3230 (3)0.1225 (16)
H7A−0.14980.86440.32200.147*
H7B−0.20330.73440.35800.147*
O80.0435 (3)0.7618 (2)0.35753 (14)0.0872 (7)
N120.5602 (3)0.5888 (2)0.48261 (15)0.0677 (5)
H120.541 (4)0.651 (2)0.5153 (17)0.081*
C130.6525 (4)0.4849 (3)0.5184 (2)0.0796 (8)
H13A0.59440.40920.50260.096*
H13B0.65030.49110.58030.096*
C140.8356 (3)0.4768 (2)0.48913 (18)0.0647 (6)
H14A0.83940.48200.42650.078*
C150.9260 (6)0.3588 (3)0.5178 (4)0.1075 (14)
H15A0.87230.32430.56840.129*
H15B0.92520.29720.47270.129*
C161.0986 (6)0.3991 (4)0.5365 (4)0.1293 (18)
H16A1.14210.35690.58670.155*
H16B1.17310.38150.48850.155*
C171.0897 (5)0.5297 (5)0.5515 (4)0.132 (2)
H17A1.10460.54650.61210.158*
H17B1.18010.57110.52050.158*
O180.9296 (3)0.57528 (19)0.52400 (18)0.0850 (7)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0894 (5)0.0744 (4)0.1029 (6)0.0133 (4)−0.0215 (5)−0.0363 (4)
C10.0455 (10)0.0558 (11)0.0733 (14)−0.0014 (10)0.0034 (11)−0.0067 (10)
N20.0585 (12)0.0615 (12)0.0864 (15)0.0100 (10)−0.0053 (11)−0.0065 (11)
C30.0738 (18)0.098 (2)0.0813 (18)0.0236 (18)0.0124 (15)0.0169 (17)
C40.0749 (18)0.0776 (17)0.0724 (16)0.0170 (15)−0.0110 (14)−0.0098 (14)
C50.117 (3)0.194 (5)0.081 (2)0.061 (4)−0.026 (2)−0.034 (3)
C60.114 (4)0.217 (6)0.107 (3)0.064 (4)−0.045 (3)−0.035 (4)
C70.075 (2)0.160 (4)0.133 (4)0.036 (3)−0.009 (2)−0.030 (3)
O80.0645 (11)0.1192 (17)0.0778 (12)0.0116 (11)0.0004 (10)−0.0262 (11)
N120.0551 (11)0.0755 (13)0.0725 (13)−0.0009 (10)−0.0071 (10)−0.0105 (11)
C130.0672 (15)0.0860 (19)0.0856 (18)−0.0126 (14)−0.0081 (14)0.0201 (16)
C140.0654 (13)0.0590 (13)0.0698 (14)0.0061 (11)−0.0113 (11)−0.0025 (12)
C150.107 (3)0.0628 (16)0.153 (4)0.0133 (17)−0.039 (3)0.004 (2)
C160.096 (3)0.104 (3)0.188 (5)0.032 (2)−0.051 (3)−0.006 (3)
C170.0660 (19)0.128 (4)0.201 (5)0.005 (2)−0.030 (3)−0.052 (4)
O180.0640 (11)0.0632 (10)0.1278 (18)−0.0006 (9)−0.0082 (12)−0.0171 (11)

Geometric parameters (Å, °)

S1—C11.675 (2)C7—H7B0.97
C1—N121.342 (3)N12—C131.450 (4)
C1—N21.346 (3)N12—H120.862 (10)
N2—C31.442 (4)C13—C141.513 (4)
N2—H20.849 (10)C13—H13A0.97
C3—C41.490 (5)C13—H13B0.97
C3—H3A0.97C14—O181.407 (3)
C3—H3B0.97C14—C151.529 (4)
C4—O81.413 (4)C14—H14A0.98
C4—C51.519 (5)C15—C161.454 (7)
C4—H4A0.98C15—H15A0.97
C5—C61.461 (7)C15—H15B0.97
C5—H5A0.97C16—C171.436 (6)
C5—H5B0.97C16—H16A0.97
C6—C71.447 (6)C16—H16B0.97
C6—H6A0.97C17—O181.418 (5)
C6—H6B0.97C17—H17A0.97
C7—O81.407 (5)C17—H17B0.97
C7—H7A0.97
N12—C1—N2114.8 (2)C7—O8—C4108.8 (3)
N12—C1—S1122.69 (19)C1—N12—C13123.9 (2)
N2—C1—S1122.5 (2)C1—N12—H12118 (2)
C1—N2—C3124.6 (3)C13—N12—H12118 (2)
C1—N2—H2124 (2)N12—C13—C14113.8 (2)
C3—N2—H2111 (3)N12—C13—H13A108.8
N2—C3—C4113.8 (3)C14—C13—H13A108.8
N2—C3—H3A108.8N12—C13—H13B108.8
C4—C3—H3A108.8C14—C13—H13B108.8
N2—C3—H3B108.8H13A—C13—H13B107.7
C4—C3—H3B108.8O18—C14—C13109.8 (2)
H3A—C3—H3B107.7O18—C14—C15106.0 (2)
O8—C4—C3110.5 (3)C13—C14—C15113.7 (3)
O8—C4—C5104.0 (3)O18—C14—H14A109.1
C3—C4—C5112.5 (4)C13—C14—H14A109.1
O8—C4—H4A109.9C15—C14—H14A109.1
C3—C4—H4A109.9C16—C15—C14104.0 (3)
C5—C4—H4A109.9C16—C15—H15A111.0
C6—C5—C4104.0 (4)C14—C15—H15A111.0
C6—C5—H5A111.0C16—C15—H15B111.0
C4—C5—H5A111.0C14—C15—H15B111.0
C6—C5—H5B111.0H15A—C15—H15B109.0
C4—C5—H5B111.0C17—C16—C15106.4 (4)
H5A—C5—H5B109.0C17—C16—H16A110.4
C7—C6—C5106.0 (4)C15—C16—H16A110.4
C7—C6—H6A110.5C17—C16—H16B110.4
C5—C6—H6A110.5C15—C16—H16B110.4
C7—C6—H6B110.5H16A—C16—H16B108.6
C5—C6—H6B110.5O18—C17—C16109.7 (4)
H6A—C6—H6B108.7O18—C17—H17A109.7
O8—C7—C6108.8 (3)C16—C17—H17A109.7
O8—C7—H7A109.9O18—C17—H17B109.7
C6—C7—H7A109.9C16—C17—H17B109.7
O8—C7—H7B109.9H17A—C17—H17B108.2
C6—C7—H7B109.9C14—O18—C17108.6 (3)
H7A—C7—H7B108.3
N12—C1—N2—C3178.2 (3)N2—C1—N12—C13179.6 (2)
S1—C1—N2—C3−2.2 (4)S1—C1—N12—C130.0 (4)
C1—N2—C3—C491.0 (4)C1—N12—C13—C1484.0 (3)
N2—C3—C4—O868.5 (4)N12—C13—C14—O1868.7 (3)
N2—C3—C4—C5−175.7 (3)N12—C13—C14—C15−172.8 (3)
O8—C4—C5—C6−28.9 (6)O18—C14—C15—C16−22.6 (5)
C3—C4—C5—C6−148.5 (5)C13—C14—C15—C16−143.3 (4)
C4—C5—C6—C721.4 (7)C14—C15—C16—C1721.4 (7)
C5—C6—C7—O8−6.3 (7)C15—C16—C17—O18−13.3 (8)
C6—C7—O8—C4−12.9 (6)C13—C14—O18—C17138.2 (4)
C3—C4—O8—C7146.8 (4)C15—C14—O18—C1715.0 (5)
C5—C4—O8—C725.9 (5)C16—C17—O18—C14−1.6 (7)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2···O18i0.85 (1)2.10 (2)2.897 (3)157 (3)
N12—H12···O8ii0.86 (1)2.20 (2)2.978 (3)150 (3)

Symmetry codes: (i) x−1/2, −y+3/2, −z+1; (ii) x+1/2, −y+3/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2734).

References

  • Bailey, P. J., Grant, K. J. & Parsons, S. (1997). Acta Cryst. C53, 247–248.
  • Custelcean, R., Gorbunova, M. G. & Bonnesen, P. V. (2005). Chem. Eur. J.11, 1459–1466. [PubMed]
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Jeon, S.-J., Li, H. & Walsh, P. J. (2005). J. Am. Chem. Soc.127, 16416–16425. [PubMed]
  • Lai, C. S. & Tiekink, E. R. T. (2002). Acta Cryst. E58, o538–o539.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Sadiq-ur-Rehman, Ali, S. & Parvez, M. (2007). Acta Cryst. E63, o640–o641.
  • Saxena, A. & Pike, R. D. (2007). J. Chem. Crystallogr.37, 755–764.
  • Shashidhar, Thiruvenkatam, V., Shivashankar, S. A., Halli, M. B. & Guru Row, T. N. (2006). Acta Cryst. E62, o1518–o1519.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). XSCANS Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Tanaka, K. & Toda, F. (2000). Chem. Rev.100, 1025–1074. [PubMed]
  • Vázquez, J., Bernès, S., Reyes, Y., Moya, M., Sharma, P., Álvarez, C. & Gutiérrez, R. (2004). Synthesis, pp. 1955–1958.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography