PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 January 1; 65(Pt 1): o95.
Published online 2008 December 13. doi:  10.1107/S1600536808039329
PMCID: PMC2968002

Ethyl 3-bromo-1-(3-chloro­pyridin-2-yl)-1H-pyrazole-5-carboxyl­ate

Abstract

The title compound, C11H9BrClN3O2, is an inter­mediate in the synthesis of Rynaxypyre, a new insecticidal anthranilic diamide used as a potent and selective ryanodine receptor activator. The dihedral angle between the aromatic ring planes is 78.7 (2)°.

Related literature

For the synthetic procedure, see: Lahm et al. (2007 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-00o95-scheme1.jpg

Experimental

Crystal data

  • C11H9BrClN3O2
  • M r = 330.57
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-00o95-efi1.jpg
  • a = 7.404 (2) Å
  • b = 10.024 (2) Å
  • c = 17.072 (3) Å
  • V = 1267.0 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 3.45 mm−1
  • T = 298 (2) K
  • 0.40 × 0.30 × 0.30 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.339, T max = 0.424 (expected range = 0.284–0.355)
  • 2295 measured reflections
  • 1347 independent reflections
  • 959 reflections with I > 2σ(I)
  • R int = 0.051
  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.056
  • wR(F 2) = 0.129
  • S = 1.00
  • 1347 reflections
  • 163 parameters
  • H-atom parameters constrained
  • Δρmax = 0.33 e Å−3
  • Δρmin = −0.42 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 15 Friedel pairs
  • Flack parameter: 0.37

Data collection: CAD-4 Software (Enraf–Nonius, 1985 [triangle]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808039329/im2086sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808039329/im2086Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

supplementary crystallographic information

Comment

Ethyl 3-bromo-1-(3-chloropyridin-2-yl)-1H-pyrazole-5-carboxylate is one of the important intermediates in the synthesis of Rynaxypyre, a new insecticidal anthranilic diamide used as a potent and selective ryanodine receptor activator (Lahm et al., 2007).

The molecular structure of (I) is shown in Fig. 1, a full list of geometric parameters is given in the supplementary material. The bond lengths and angles are within normal ranges (Allen et al., 1987). The dihedral angle of the rings A (C1—C5/N1) and B(C9—C11/N2/N3) is measured to 78.7 (2)°.

No obvious intra- or inter-molecular hydrogen bonds were observed in the crystal structure (Fig. 2).

Experimental

The title compound (I) was synthesized by a method reported in the literature (Lahm et al., 2007). Crystals of the title compound were obtained by dissolving ethyl 3-bromo-1-(3-chloropyridin-2-yl)-1H-pyrazole-5-carboxylate (3.3 g, 10.0 mmol) in acetonitrile (60 ml) and evaporating the solvent slowly at room temperature for about 20 d.

Refinement

H atoms were positioned geometrically, with O—H = 0.82 Å and C—H = 0.93Å for aromatic H, 0.97 Å for CH2 and 0.96 Å for CH3 groups. Hydrogen atoms were constrained to ride on their parent atoms, with Uiso(H) = xUeq(C/O), where x = 1.2 for aromatic H and x = 1.5 for other H.

Figures

Fig. 1.
A drawing of the title molecular structure, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
A packing diagram for (I).

Crystal data

C11H9BrClN3O2F(000) = 656
Mr = 330.57Dx = 1.733 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 25 reflections
a = 7.404 (2) Åθ = 9–13°
b = 10.024 (2) ŵ = 3.45 mm1
c = 17.072 (3) ÅT = 298 K
V = 1267.0 (4) Å3Block, colourless
Z = 40.40 × 0.30 × 0.30 mm

Data collection

Enraf–Nonius CAD-4 diffractometer959 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.051
graphiteθmax = 25.3°, θmin = 2.4°
ω/2θ scansh = 0→8
Absorption correction: ψ scan (North et al., 1968)k = 0→12
Tmin = 0.339, Tmax = 0.424l = −20→20
2295 measured reflections3 standard reflections every 200 reflections
1347 independent reflections intensity decay: 1%

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.129w = 1/[σ2(Fo2) + (0.063P)2 + 0.5P] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
1347 reflectionsΔρmax = 0.33 e Å3
163 parametersΔρmin = −0.42 e Å3
0 restraintsAbsolute structure: Flack (1983), 155 Frieldel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.37

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br0.03831 (14)0.07498 (8)0.79256 (5)0.0580 (3)
Cl0.2975 (3)0.5607 (2)0.90139 (15)0.0661 (6)
O10.0029 (10)0.4767 (5)1.0803 (3)0.0645 (19)
N1−0.2392 (8)0.5697 (7)0.9219 (4)0.0481 (16)
C10.0862 (11)0.6189 (7)0.9087 (5)0.046 (2)
C20.0441 (15)0.7564 (7)0.9030 (4)0.056 (2)
H2A0.13550.81900.89640.067*
N2−0.0180 (10)0.3292 (5)0.8505 (3)0.0457 (17)
O20.0190 (8)0.2604 (4)1.1121 (3)0.0483 (14)
N3−0.0260 (10)0.3932 (5)0.9196 (3)0.0442 (16)
C3−0.1273 (14)0.7949 (8)0.9073 (6)0.059 (2)
H3A−0.15640.88480.90270.071*
C4−0.2629 (11)0.7014 (8)0.9187 (5)0.055 (2)
H4A−0.38010.73330.92450.066*
C5−0.0628 (13)0.5354 (6)0.9191 (4)0.045 (2)
C60.0235 (18)0.1666 (8)1.2393 (5)0.074 (3)
H6A0.03240.18601.29430.111*
H6B0.12180.10991.22410.111*
H6C−0.08890.12241.22890.111*
C70.0317 (13)0.2919 (7)1.1945 (4)0.0476 (19)
H7A−0.06710.34991.20970.057*
H7B0.14440.33771.20520.057*
C80.0085 (12)0.3603 (7)1.0617 (4)0.046 (2)
C90.0042 (11)0.3108 (6)0.9816 (4)0.041 (2)
C100.0303 (12)0.1880 (6)0.9503 (4)0.0413 (17)
H10A0.05260.10920.97730.050*
C110.0173 (11)0.2032 (6)0.8719 (4)0.0383 (18)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br0.0822 (6)0.0377 (4)0.0539 (4)0.0033 (5)0.0035 (5)−0.0055 (4)
Cl0.0537 (13)0.0473 (14)0.0974 (17)0.0016 (12)0.0030 (12)0.0009 (13)
O10.107 (6)0.032 (3)0.054 (3)−0.003 (3)−0.006 (4)−0.004 (2)
N10.047 (4)0.028 (4)0.070 (4)0.004 (4)0.019 (3)0.005 (4)
C10.045 (5)0.034 (4)0.058 (5)0.004 (3)0.002 (4)0.000 (3)
C20.082 (7)0.026 (4)0.059 (5)0.001 (5)0.018 (6)0.003 (3)
N20.067 (5)0.028 (3)0.042 (3)0.003 (3)−0.014 (4)0.002 (2)
O20.070 (4)0.035 (3)0.040 (2)0.000 (3)−0.004 (3)−0.001 (2)
N30.066 (4)0.024 (3)0.043 (3)−0.003 (3)−0.001 (3)−0.001 (2)
C30.071 (7)0.030 (5)0.077 (6)0.009 (5)0.004 (6)−0.003 (4)
C40.034 (5)0.052 (5)0.079 (6)0.001 (4)0.002 (5)−0.001 (5)
C50.073 (6)0.025 (4)0.036 (4)−0.010 (4)−0.005 (4)0.007 (3)
C60.113 (9)0.058 (5)0.050 (5)0.006 (6)−0.006 (6)0.013 (4)
C70.059 (5)0.043 (4)0.041 (4)0.010 (4)−0.006 (4)−0.005 (3)
C80.057 (7)0.029 (4)0.052 (4)−0.008 (4)0.009 (4)0.001 (3)
C90.052 (6)0.030 (4)0.041 (4)−0.001 (4)0.000 (4)0.001 (3)
C100.057 (5)0.019 (3)0.048 (4)0.002 (4)−0.003 (4)0.003 (3)
C110.044 (5)0.025 (3)0.046 (4)−0.004 (3)0.003 (4)0.001 (3)

Geometric parameters (Å, °)

Br—C111.874 (6)N3—C51.452 (8)
Cl—C11.675 (8)C3—C41.387 (12)
O1—C81.210 (7)C3—H3A0.9300
N1—C41.334 (9)C4—H4A0.9300
N1—C51.351 (11)C6—C71.472 (9)
C1—C51.396 (11)C6—H6A0.9600
C1—C21.416 (10)C6—H6B0.9600
C2—C31.328 (12)C6—H6C0.9600
C2—H2A0.9300C7—H7A0.9700
N2—C111.340 (8)C7—H7B0.9700
N2—N31.344 (7)C8—C91.454 (10)
O2—C81.323 (8)C9—C101.356 (9)
O2—C71.445 (7)C10—C111.351 (9)
N3—C91.361 (8)C10—H10A0.9300
C4—N1—C5112.2 (6)H6A—C6—H6B109.5
C5—C1—C2114.7 (8)C7—C6—H6C109.5
C5—C1—Cl122.6 (6)H6A—C6—H6C109.5
C2—C1—Cl122.6 (7)H6B—C6—H6C109.5
C3—C2—C1119.3 (9)O2—C7—C6108.5 (6)
C3—C2—H2A120.4O2—C7—H7A110.0
C1—C2—H2A120.4C6—C7—H7A110.0
C11—N2—N3102.7 (5)O2—C7—H7B110.0
C8—O2—C7118.2 (5)C6—C7—H7B110.0
N2—N3—C9112.7 (5)H7A—C7—H7B108.4
N2—N3—C5118.2 (5)O1—C8—O2124.1 (7)
C9—N3—C5129.1 (5)O1—C8—C9125.1 (7)
C2—C3—C4120.2 (8)O2—C8—C9110.8 (6)
C2—C3—H3A119.9C10—C9—N3105.5 (6)
C4—C3—H3A119.9C10—C9—C8132.6 (6)
N1—C4—C3125.4 (8)N3—C9—C8121.9 (6)
N1—C4—H4A117.3C11—C10—C9106.1 (6)
C3—C4—H4A117.3C11—C10—H10A126.9
N1—C5—C1128.0 (6)C9—C10—H10A126.9
N1—C5—N3115.5 (7)N2—C11—C10113.0 (6)
C1—C5—N3116.2 (8)N2—C11—Br117.8 (5)
C7—C6—H6A109.5C10—C11—Br129.2 (5)
C7—C6—H6B109.5
C5—C1—C2—C3−0.4 (12)C8—O2—C7—C6174.4 (8)
Cl—C1—C2—C3178.2 (8)C7—O2—C8—O1−2.5 (13)
C11—N2—N3—C90.4 (9)C7—O2—C8—C9177.6 (7)
C11—N2—N3—C5180.0 (7)N2—N3—C9—C10−0.9 (10)
C1—C2—C3—C41.2 (15)C5—N3—C9—C10179.6 (8)
C5—N1—C4—C34.9 (12)N2—N3—C9—C8177.7 (7)
C2—C3—C4—N1−3.8 (16)C5—N3—C9—C8−1.8 (14)
C4—N1—C5—C1−4.2 (11)O1—C8—C9—C10171.0 (10)
C4—N1—C5—N3−177.9 (6)O2—C8—C9—C10−9.1 (13)
C2—C1—C5—N12.1 (12)O1—C8—C9—N3−7.1 (14)
Cl—C1—C5—N1−176.5 (6)O2—C8—C9—N3172.8 (8)
C2—C1—C5—N3175.8 (6)N3—C9—C10—C110.9 (10)
Cl—C1—C5—N3−2.8 (10)C8—C9—C10—C11−177.4 (9)
N2—N3—C5—N189.5 (9)N3—N2—C11—C100.2 (10)
C9—N3—C5—N1−91.0 (10)N3—N2—C11—Br179.4 (6)
N2—N3—C5—C1−85.1 (9)C9—C10—C11—N2−0.7 (10)
C9—N3—C5—C194.4 (10)C9—C10—C11—Br−179.8 (6)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2086).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Enraf–Nonius (1985). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • Lahm, G. P., Stevenson, T. M., Selby, T. P., Freudenberger, J. H., Cordova, D., Flexner, L., Bellin, C. A., Dubas, C. M., Smith, B. K., Hughes, K. A., Hollingshaus, J. G., Clark, C. E. & Benner, E. A. (2007). Bioorg. Med. Chem. Lett.17, 6274–6279. [PubMed]
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography