PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 January 1; 65(Pt 1): o91.
Published online 2008 December 10. doi:  10.1107/S1600536808041329
PMCID: PMC2967998

Ethyl 4-anilino-3-nitrobenzoate

Abstract

In the title compound, C15H14N2O4, the aromatic rings are oriented at a dihedral angle of 78.33 (3)°. An intra­molecular N—H(...)O hydrogen bond results in a non-planar six-membered ring with a flattened-boat conformation. In the crystal structure, inter­molecular N—H(...)O hydrogen bonds link the mol­ecules. π–π contacts between the phenyl rings and both the phenyl and benzene rings, [centroid–centroid distances = 3.841 (3) and 3.961 (3) Å] may further stabilize the structure.

Related literature

For bond-length data, see: Allen et al. (1987 [triangle]). For ring puckering parameters, see: Cremer & Pople (1975 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-00o91-scheme1.jpg

Experimental

Crystal data

  • C15H14N2O4
  • M r = 286.28
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-00o91-efi1.jpg
  • a = 10.683 (2) Å
  • b = 9.905 (2) Å
  • c = 13.698 (3) Å
  • β = 105.05 (3)°
  • V = 1399.7 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 294 (2) K
  • 0.30 × 0.20 × 0.20 mm

Data collection

  • Enraf-Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.971, T max = 0.980
  • 2647 measured reflections
  • 2508 independent reflections
  • 1519 reflections with I > 2σ(I)
  • R int = 0.051
  • 3 standard reflections frequency: 120 min intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.071
  • wR(F 2) = 0.199
  • S = 1.00
  • 2508 reflections
  • 190 parameters
  • H-atom parameters constrained
  • Δρmax = 0.31 e Å−3
  • Δρmin = −0.32 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989 [triangle]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808041329/hk2595sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808041329/hk2595Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Dr Shan Liu, Nanjing University of Technology, for useful discussions and the Center of Testing and Analysis, Nanjing University, for support.

supplementary crystallographic information

Comment

Some derivatives of benzoic acid are important chemical materials. We report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (C4-C9) and B (C10-C15) are, of course, planar, and they are oriented at a dihedral angle of 78.33 (3)°. The intramolecular N-H···O hydrogen bond (Table 1) results in a nonplanar six-membered ring C (O3/N1/N2/C6/C7/H2A), having total puckering amplitude, QT, of 0.131 (2) Å, flattened-boat conformation [[var phi] = 140.37 (3)° and θ = 75.09 (4)°] (Cremer & Pople, 1975).

In the crystal structure, intermolecular N-H···O hydrogen bonds (Table 1) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure. The π-π contacts between the phenyl rings and the phenyl and the benzene rings, Cg1—Cg1i and Cg1—Cg2ii [symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) x - 1/2, 1/2 - y, z - 1/2, where Cg1 and Cg2 are centroids of the rings A (C4-C6) and B (C10-C15), respectively] may further stabilize the structure, with centroid-centroid distances of 3.841 (3) Å and 3.961 (3) Å.

Experimental

For the preparation of the title compound, ethyl 4-chloro-3-nitrobenzoate (5.0 g, 0.022 mol) was heated in fresh distilled aniline (10 ml) for 18 h at 393 K, and then ethanol (50 ml) was added, at room temperature. The yellow precipitate was sucked, washed with cold ethanol (2 X 20 ml), and then dried (yield; 4.7 g, 75%). Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.

Refinement

H atoms were positioned geometrically, with N-H = 0.86 Å (for NH) and C-H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme. Hydrogen bond is shown as dashed line.
Fig. 2.
A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

C15H14N2O4F(000) = 600
Mr = 286.28Dx = 1.358 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 10.683 (2) Åθ = 10–13°
b = 9.905 (2) ŵ = 0.10 mm1
c = 13.698 (3) ÅT = 294 K
β = 105.05 (3)°Block, colorless
V = 1399.7 (5) Å30.30 × 0.20 × 0.20 mm
Z = 4

Data collection

Enraf-Nonius CAD-4 diffractometer1519 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.051
graphiteθmax = 25.2°, θmin = 2.2°
ω/2θ scansh = −12→12
Absorption correction: ψ scan (North et al., 1968)k = 0→11
Tmin = 0.971, Tmax = 0.980l = 0→16
2647 measured reflections3 standard reflections every 120 min
2508 independent reflections intensity decay: none

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.071Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.199H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.050P)2 + 3.4P] where P = (Fo2 + 2Fc2)/3
2508 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = −0.32 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL refle (Sheldrick, 2008)ctions. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.0229 (3)0.1219 (3)0.2353 (2)0.0602 (9)
O20.1935 (2)−0.0076 (3)0.2291 (2)0.0605 (8)
O3−0.0506 (3)−0.4222 (3)−0.1083 (3)0.0705 (10)
O40.1353 (3)−0.3433 (4)−0.0297 (3)0.0852 (12)
N10.0155 (3)−0.3404 (4)−0.0480 (3)0.0560 (9)
N2−0.2640 (3)−0.2968 (4)−0.1003 (2)0.0523 (9)
H2A−0.2321−0.3625−0.12710.063*
C10.0290 (5)0.2946 (6)0.3560 (4)0.0943 (19)
H1A0.08360.34710.40920.141*
H1B−0.03280.24550.38200.141*
H1C−0.01590.35350.30270.141*
C20.1084 (4)0.1999 (5)0.3166 (4)0.0683 (14)
H2B0.15410.13990.37000.082*
H2C0.17180.24860.29090.082*
C30.0774 (4)0.0183 (4)0.2003 (3)0.0489 (10)
C4−0.0131 (3)−0.0606 (4)0.1202 (3)0.0464 (10)
C50.0350 (3)−0.1607 (4)0.0723 (3)0.0452 (10)
H5A0.1238−0.17640.08970.054*
C6−0.0450 (3)−0.2399 (4)−0.0018 (3)0.0434 (9)
C7−0.1821 (3)−0.2191 (4)−0.0295 (3)0.0438 (9)
C8−0.2275 (3)−0.1155 (4)0.0203 (3)0.0486 (10)
H8A−0.3161−0.09840.00340.058*
C9−0.1479 (3)−0.0370 (4)0.0934 (3)0.0465 (10)
H9A−0.18270.03130.12490.056*
C10−0.4030 (3)−0.2732 (5)−0.1322 (3)0.0526 (11)
C11−0.4831 (4)−0.3588 (6)−0.1004 (4)0.0754 (15)
H11A−0.4487−0.4284−0.05590.090*
C12−0.6166 (5)−0.3428 (7)−0.1342 (5)0.0907 (19)
H12A−0.6722−0.4012−0.11270.109*
C13−0.6650 (4)−0.2397 (7)−0.1995 (5)0.096 (2)
H13A−0.7543−0.2280−0.22190.115*
C14−0.5848 (4)−0.1536 (6)−0.2324 (4)0.0854 (18)
H14A−0.6199−0.0841−0.27680.103*
C15−0.4501 (4)−0.1691 (5)−0.1999 (4)0.0654 (13)
H15B−0.3944−0.1122−0.22260.078*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0423 (16)0.0602 (19)0.0576 (18)−0.0073 (14)−0.0236 (13)−0.0105 (15)
O20.0306 (14)0.075 (2)0.0604 (18)−0.0033 (14)−0.0167 (12)0.0023 (16)
O30.0482 (17)0.067 (2)0.080 (2)0.0093 (16)−0.0131 (16)−0.0220 (18)
O40.0283 (15)0.115 (3)0.104 (3)0.0123 (17)0.0021 (16)−0.016 (2)
N10.0367 (18)0.069 (2)0.056 (2)0.0118 (18)−0.0003 (16)−0.0016 (19)
N20.0263 (16)0.066 (2)0.056 (2)−0.0001 (15)−0.0046 (14)−0.0167 (18)
C10.090 (4)0.092 (4)0.082 (4)−0.013 (3)−0.013 (3)−0.026 (3)
C20.057 (3)0.068 (3)0.061 (3)−0.013 (2)−0.018 (2)−0.017 (3)
C30.040 (2)0.053 (3)0.042 (2)−0.0083 (19)−0.0115 (17)0.009 (2)
C40.0278 (18)0.052 (2)0.045 (2)−0.0041 (17)−0.0165 (16)0.0055 (19)
C50.0262 (18)0.052 (2)0.046 (2)−0.0026 (17)−0.0117 (16)0.0101 (19)
C60.0299 (18)0.053 (2)0.041 (2)0.0049 (17)−0.0023 (16)0.0030 (18)
C70.0240 (17)0.049 (2)0.048 (2)−0.0009 (17)−0.0090 (15)−0.0001 (19)
C80.0233 (17)0.060 (3)0.053 (2)0.0000 (17)−0.0071 (16)−0.001 (2)
C90.0327 (19)0.052 (2)0.047 (2)−0.0006 (17)−0.0021 (16)−0.0051 (19)
C100.0226 (18)0.068 (3)0.057 (3)−0.0039 (19)−0.0082 (17)−0.023 (2)
C110.047 (3)0.107 (4)0.072 (3)−0.015 (3)0.014 (2)−0.016 (3)
C120.048 (3)0.118 (5)0.114 (5)−0.026 (3)0.036 (3)−0.033 (4)
C130.024 (2)0.127 (6)0.122 (5)−0.009 (3)−0.006 (3)−0.064 (5)
C140.039 (3)0.098 (4)0.097 (4)0.016 (3)−0.022 (3)−0.030 (3)
C150.033 (2)0.059 (3)0.089 (3)0.002 (2)−0.013 (2)−0.008 (3)

Geometric parameters (Å, °)

O1—C21.463 (5)C5—C61.387 (5)
O1—C31.329 (5)C5—H5A0.9300
O2—C31.227 (4)C6—C71.429 (5)
N1—O31.239 (4)C7—C81.387 (5)
N1—O41.240 (4)C8—C91.374 (5)
N1—C61.422 (5)C8—H8A0.9300
N2—C71.363 (5)C9—H9A0.9300
N2—C101.454 (4)C10—C111.354 (6)
N2—H2A0.8600C10—C151.390 (6)
C1—C21.458 (7)C11—C121.390 (7)
C1—H1A0.9600C11—H11A0.9300
C1—H1B0.9600C12—C131.367 (9)
C1—H1C0.9600C12—H12A0.9300
C2—H2B0.9700C13—C141.366 (8)
C2—H2C0.9700C13—H13A0.9300
C3—C41.483 (5)C14—C151.400 (6)
C4—C51.360 (6)C14—H14A0.9300
C4—C91.410 (5)C15—H15B0.9300
C3—O1—C2115.9 (3)C5—C6—N1117.2 (3)
O3—N1—O4120.0 (4)C5—C6—C7120.5 (4)
O3—N1—C6120.6 (3)N2—C7—C8121.7 (3)
O4—N1—C6119.4 (4)N2—C7—C6122.1 (4)
C7—N2—C10122.7 (3)C8—C7—C6116.1 (3)
C7—N2—H2A118.7C7—C8—H8A118.4
C10—N2—H2A118.7C9—C8—C7123.2 (3)
C2—C1—H1A109.5C9—C8—H8A118.4
C2—C1—H1B109.5C4—C9—H9A120.3
C2—C1—H1C109.5C8—C9—C4119.5 (4)
H1A—C1—H1B109.5C8—C9—H9A120.3
H1A—C1—H1C109.5C11—C10—C15122.0 (4)
H1B—C1—H1C109.5C11—C10—N2118.9 (4)
O1—C2—H2B110.0C15—C10—N2119.0 (4)
O1—C2—H2C110.0C10—C11—C12120.1 (6)
C1—C2—O1108.3 (4)C10—C11—H11A120.0
C1—C2—H2B110.0C12—C11—H11A120.0
C1—C2—H2C110.0C11—C12—H12A120.5
H2B—C2—H2C108.4C13—C12—C11118.9 (5)
O1—C3—C4114.3 (3)C13—C12—H12A120.5
O2—C3—O1123.1 (4)C12—C13—H13A119.4
O2—C3—C4122.6 (4)C14—C13—C12121.3 (5)
C5—C4—C9118.9 (3)C14—C13—H13A119.4
C5—C4—C3119.0 (3)C13—C14—C15120.5 (6)
C9—C4—C3122.1 (4)C13—C14—H14A119.8
C4—C5—C6121.8 (3)C15—C14—H14A119.8
C4—C5—H5A119.1C10—C15—C14117.2 (5)
C6—C5—H5A119.1C10—C15—H15B121.4
N1—C6—C7122.4 (3)C14—C15—H15B121.4
C3—O1—C2—C1−171.2 (4)N1—C6—C7—N21.8 (6)
C2—O1—C3—O2−4.1 (6)C5—C6—C7—C81.1 (6)
C2—O1—C3—C4178.3 (4)N1—C6—C7—C8−178.6 (4)
O2—C3—C4—C5−3.9 (6)N2—C7—C8—C9178.7 (4)
O1—C3—C4—C5173.7 (4)C6—C7—C8—C9−0.9 (6)
O2—C3—C4—C9174.8 (4)C7—C8—C9—C40.1 (6)
O1—C3—C4—C9−7.6 (5)C5—C4—C9—C80.4 (6)
C9—C4—C5—C6−0.2 (6)C3—C4—C9—C8−178.4 (4)
C3—C4—C5—C6178.6 (4)C7—N2—C10—C11−106.2 (5)
C4—C5—C6—N1179.1 (4)C7—N2—C10—C1578.1 (5)
C4—C5—C6—C7−0.6 (6)C15—C10—C11—C12−1.0 (7)
O3—N1—C6—C5173.7 (4)N2—C10—C11—C12−176.6 (4)
O4—N1—C6—C5−8.2 (6)C10—C11—C12—C13−0.1 (8)
O3—N1—C6—C7−6.6 (6)C11—C12—C13—C140.5 (9)
O4—N1—C6—C7171.5 (4)C12—C13—C14—C150.1 (8)
C10—N2—C7—C83.1 (6)C11—C10—C15—C141.6 (7)
C10—N2—C7—C6−177.4 (4)N2—C10—C15—C14177.2 (4)
C5—C6—C7—N2−178.5 (4)C13—C14—C15—C10−1.1 (7)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2A···O30.861.982.623 (5)131
N2—H2A···O2i0.862.312.978 (4)134

Symmetry codes: (i) x−1/2, −y−1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2595).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, S1–19.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc 97, 1354–1358.
  • Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft. The Netherlands.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography