PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 January 1; 65(Pt 1): o84.
Published online 2008 December 10. doi:  10.1107/S160053680803972X
PMCID: PMC2967992

N′-(4-Chloro­benzyl­idene)-2-hydroxy­benzohydrazide

Abstract

The title mol­ecule, C14H11ClN2O2, adopts a trans configuration with respect to the C=N double bond. An intra­molecular N—H(...)O hydrogen bond contributes to mol­ecular conformation and the two benzene rings form a dihedral angle of 17.9 (8)°. In the crystal structure, inter­molecular O—H(...)O hydrogen bonds link the mol­ecules into chains running along [10An external file that holds a picture, illustration, etc.
Object name is e-65-00o84-efi1.jpg].

Related literature

For general background to hydrazones and Schiff bases and their potential pharmacological and anti­tumor properties, see: Karthikeyan et al. (2006 [triangle]); Khattab (2005 [triangle]); Kucukguzel et al. (2006 [triangle]); Okabe et al. (1993 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-00o84-scheme1.jpg

Experimental

Crystal data

  • C14H11ClN2O2
  • M r = 274.70
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-00o84-efi2.jpg
  • a = 4.8557 (6) Å
  • b = 24.588 (3) Å
  • c = 11.0903 (13) Å
  • β = 99.710 (2)°
  • V = 1305.1 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.29 mm−1
  • T = 298 (2) K
  • 0.10 × 0.10 × 0.08 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.972, T max = 0.977
  • 11227 measured reflections
  • 3126 independent reflections
  • 2402 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.067
  • wR(F 2) = 0.169
  • S = 1.12
  • 3126 reflections
  • 180 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.38 e Å−3
  • Δρmin = −0.22 e Å−3

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680803972X/cv2476sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680803972X/cv2476Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Natural Science Foundation of Anhui Provincial University College (grant No. 2005 KJ137).

supplementary crystallographic information

Comment

Hydrazones and Schiff bases have attracted much attention for their excellent biological properties, especially for their potential pharmacological and antitumor properties (Kucukguzel et al., 2006; Khattab, 2005; Karthikeyan et al., 2006; Okabe et al., 1993). We are interested in this fields. As a part of ongoing study, we report herein the crystal structure of the title compound, (I).

The molecular structure of (I) (Fig. 1) displays a trans configuration about the C=N bond. Intramolecular N—H···O hydrogen bond (Table 1) contributes to molecular conformation - the dihedral angle between the two benzene rings is 17.9 (8)°. In the crystal, the molecules are linked into chains by intermolecular O—H···O hydrongen bonds (Table 1).

Experimental

Equivalent amounts of 2-Hydroxybenzohydrazide and 3-chlorobenzohydrazide were reacted in ethanol (10 mL) for 1 h. After allowing the resulting solution to stand in air for 10 d colourless block-shaped crystals were formed on slow evaporation of the solvent.

Refinement

C-bound H atoms were placed in calculated positions (C—H = 0.93 Å) and constrained to ride on their parent atom, with Uiso(H) = 1.2Ueq(C). The remaining H atoms were located in a difference map and refined isotropically.

Figures

Fig. 1.
The molecular structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Crystal data

C14H11ClN2O2F(000) = 568
Mr = 274.70Dx = 1.398 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 4.8557 (6) ÅCell parameters from 986 reflections
b = 24.588 (3) Åθ = 2.1–28.2°
c = 11.0903 (13) ŵ = 0.29 mm1
β = 99.710 (2)°T = 298 K
V = 1305.1 (3) Å3Block, colourless
Z = 40.10 × 0.10 × 0.08 mm

Data collection

Bruker SMART CCD area-detector diffractometer3126 independent reflections
Radiation source: fine-focus sealed tube2402 reflections with I > 2σ(I)
graphiteRint = 0.027
[var phi] and ω scansθmax = 28.2°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −6→6
Tmin = 0.972, Tmax = 0.977k = −32→31
11227 measured reflectionsl = −14→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.169H atoms treated by a mixture of independent and constrained refinement
S = 1.12w = 1/[σ2(Fo2) + (0.0705P)2 + 0.4971P] where P = (Fo2 + 2Fc2)/3
3126 reflections(Δ/σ)max = 0.072
180 parametersΔρmax = 0.38 e Å3
1 restraintΔρmin = −0.22 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl1−0.39445 (17)1.00945 (3)0.73436 (9)0.0851 (3)
O10.9734 (4)0.73796 (8)0.50406 (15)0.0610 (5)
N10.6996 (4)0.76768 (8)0.67797 (18)0.0476 (5)
O20.8154 (4)0.72610 (8)0.85960 (14)0.0618 (5)
N20.5245 (4)0.80391 (8)0.72149 (16)0.0465 (5)
C70.8405 (4)0.73021 (9)0.75183 (18)0.0442 (5)
C11.0293 (4)0.69349 (9)0.69718 (18)0.0411 (5)
C80.3878 (5)0.83421 (10)0.6399 (2)0.0507 (6)
H80.41120.82940.55910.061*
C31.2815 (5)0.66229 (11)0.5401 (2)0.0531 (6)
H31.32520.66570.46190.064*
C21.0942 (4)0.69832 (9)0.57896 (18)0.0423 (5)
C41.4019 (5)0.62186 (11)0.6157 (2)0.0588 (6)
H41.52990.59840.58920.071*
C90.1965 (5)0.87608 (10)0.6674 (2)0.0485 (5)
C61.1533 (5)0.65119 (11)0.7705 (2)0.0562 (6)
H61.11120.64710.84870.067*
C13−0.0225 (6)0.93008 (11)0.8045 (3)0.0648 (7)
H13−0.04530.93890.88380.078*
C140.1588 (6)0.88896 (11)0.7845 (2)0.0571 (6)
H140.25610.86980.85060.069*
C12−0.1684 (5)0.95778 (10)0.7069 (3)0.0579 (6)
C51.3350 (6)0.61556 (12)0.7309 (2)0.0623 (7)
H51.41270.58730.78120.075*
C100.0436 (6)0.90483 (13)0.5712 (3)0.0713 (8)
H100.06430.89630.49150.086*
C11−0.1375 (6)0.94547 (13)0.5903 (3)0.0763 (9)
H11−0.23770.96440.52450.092*
H11.053 (6)0.7435 (12)0.449 (2)0.081 (10)*
H20.708 (5)0.7692 (10)0.607 (2)0.051 (7)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0716 (5)0.0602 (5)0.1249 (8)0.0104 (3)0.0203 (5)0.0032 (4)
O10.0751 (11)0.0777 (13)0.0384 (9)0.0191 (9)0.0334 (8)0.0132 (8)
N10.0595 (11)0.0569 (12)0.0316 (9)0.0026 (9)0.0223 (8)−0.0021 (8)
O20.0829 (12)0.0735 (12)0.0359 (8)0.0106 (9)0.0301 (8)0.0019 (8)
N20.0528 (10)0.0519 (11)0.0384 (10)−0.0043 (8)0.0186 (8)−0.0053 (8)
C70.0513 (12)0.0507 (13)0.0346 (10)−0.0096 (10)0.0191 (9)−0.0043 (9)
C10.0452 (11)0.0483 (12)0.0321 (10)−0.0081 (9)0.0136 (8)−0.0037 (9)
C80.0585 (13)0.0622 (15)0.0342 (11)−0.0036 (11)0.0154 (10)−0.0046 (10)
C30.0599 (13)0.0668 (16)0.0365 (11)0.0045 (11)0.0192 (10)−0.0054 (11)
C20.0459 (11)0.0513 (13)0.0320 (10)−0.0042 (9)0.0133 (8)−0.0009 (9)
C40.0632 (15)0.0669 (16)0.0471 (13)0.0129 (12)0.0117 (11)−0.0114 (12)
C90.0514 (12)0.0545 (14)0.0401 (11)−0.0073 (10)0.0094 (9)−0.0007 (10)
C60.0744 (16)0.0621 (15)0.0352 (11)0.0040 (12)0.0182 (11)0.0028 (11)
C130.0829 (18)0.0613 (16)0.0554 (15)0.0062 (14)0.0266 (13)0.0019 (13)
C140.0732 (16)0.0579 (15)0.0432 (13)0.0118 (12)0.0182 (11)0.0090 (11)
C120.0519 (13)0.0492 (14)0.0732 (17)−0.0039 (11)0.0120 (12)0.0066 (12)
C50.0808 (18)0.0614 (16)0.0441 (13)0.0150 (13)0.0084 (12)0.0032 (12)
C100.0768 (18)0.090 (2)0.0453 (14)0.0106 (16)0.0059 (12)0.0040 (14)
C110.0708 (18)0.090 (2)0.0633 (18)0.0143 (16)−0.0019 (14)0.0168 (16)

Geometric parameters (Å, °)

Cl1—C121.739 (3)C4—C51.379 (3)
O1—C21.349 (3)C4—H40.9300
O1—H10.782 (18)C9—C141.379 (3)
N1—C71.341 (3)C9—C101.386 (4)
N1—N21.374 (3)C6—C51.367 (3)
N1—H20.80 (3)C6—H60.9300
O2—C71.226 (2)C13—C121.371 (4)
N2—C81.269 (3)C13—C141.383 (4)
C7—C11.487 (3)C13—H130.9300
C1—C61.393 (3)C14—H140.9300
C1—C21.404 (3)C12—C111.360 (4)
C8—C91.453 (3)C5—H50.9300
C8—H80.9300C10—C111.371 (4)
C3—C41.367 (3)C10—H100.9300
C3—C21.389 (3)C11—H110.9300
C3—H30.9300
C2—O1—H1112 (2)C14—C9—C8123.4 (2)
C7—N1—N2120.86 (18)C10—C9—C8118.6 (2)
C7—N1—H2122.0 (18)C5—C6—C1122.0 (2)
N2—N1—H2117.1 (18)C5—C6—H6119.0
C8—N2—N1114.23 (18)C1—C6—H6119.0
O2—C7—N1121.9 (2)C12—C13—C14119.7 (2)
O2—C7—C1121.1 (2)C12—C13—H13120.2
N1—C7—C1117.02 (17)C14—C13—H13120.2
C6—C1—C2117.7 (2)C9—C14—C13120.5 (2)
C6—C1—C7116.82 (18)C9—C14—H14119.7
C2—C1—C7125.5 (2)C13—C14—H14119.7
N2—C8—C9122.9 (2)C11—C12—C13121.0 (3)
N2—C8—H8118.6C11—C12—Cl1120.2 (2)
C9—C8—H8118.6C13—C12—Cl1118.8 (2)
C4—C3—C2120.5 (2)C6—C5—C4119.4 (2)
C4—C3—H3119.7C6—C5—H5120.3
C2—C3—H3119.7C4—C5—H5120.3
O1—C2—C3120.60 (18)C11—C10—C9121.8 (3)
O1—C2—C1119.55 (19)C11—C10—H10119.1
C3—C2—C1119.9 (2)C9—C10—H10119.1
C3—C4—C5120.4 (2)C12—C11—C10119.1 (3)
C3—C4—H4119.8C12—C11—H11120.5
C5—C4—H4119.8C10—C11—H11120.5
C14—C9—C10117.9 (2)
C7—N1—N2—C8−174.7 (2)N2—C8—C9—C10−176.0 (2)
N2—N1—C7—O21.3 (3)C2—C1—C6—C50.7 (4)
N2—N1—C7—C1−178.79 (18)C7—C1—C6—C5−178.7 (2)
O2—C7—C1—C66.2 (3)C10—C9—C14—C13−1.2 (4)
N1—C7—C1—C6−173.7 (2)C8—C9—C14—C13178.6 (2)
O2—C7—C1—C2−173.2 (2)C12—C13—C14—C90.8 (4)
N1—C7—C1—C26.9 (3)C14—C13—C12—C11−0.1 (4)
N1—N2—C8—C9−178.5 (2)C14—C13—C12—Cl1−179.8 (2)
C4—C3—C2—O1−179.4 (2)C1—C6—C5—C41.0 (4)
C4—C3—C2—C10.5 (4)C3—C4—C5—C6−2.0 (4)
C6—C1—C2—O1178.4 (2)C14—C9—C10—C110.9 (4)
C7—C1—C2—O1−2.2 (3)C8—C9—C10—C11−178.9 (3)
C6—C1—C2—C3−1.5 (3)C13—C12—C11—C10−0.2 (4)
C7—C1—C2—C3177.9 (2)Cl1—C12—C11—C10179.5 (2)
C2—C3—C4—C51.3 (4)C9—C10—C11—C12−0.2 (5)
N2—C8—C9—C144.1 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H2···O10.80 (3)2.01 (3)2.624 (2)134 (2)
O1—H1···O2i0.78 (2)1.90 (2)2.647 (2)159 (3)

Symmetry codes: (i) x+1/2, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2476).

References

  • Karthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem.14, 7482–7489. [PubMed]
  • Khattab, S. N. (2005). Molecules, 10, 1218–1228. [PubMed]
  • Kucukguzel, G., Kocatepe, A., De Clercq, E., Sahi, F. & Gulluce, M. (2006). Eur. J. Med. Chem.41, 353–359. [PubMed]
  • Okabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678–1680.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography