PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 January 1; 65(Pt 1): o81–o82.
Published online 2008 December 10. doi:  10.1107/S1600536808041123
PMCID: PMC2967990

4-Chloro-N-[N-(6-methyl-2-pyrid­yl)car­bamo­thio­yl]benzamide

Abstract

In the title compound, C14H12ClN3OS, the short exocyclic N—C bond lengths indicate resonance in the thiourea part of the mol­ecule. The title compound is stabilized by an intra­molecular N—H(...)N hydrogen bond, which results in the formation of a six-membered ring. In addition, it shows a synperiplanar conformation between the thio­carbonyl group and the pyridine group. Inter­molecular N—H(...)S and C—H(...)O inter­actions are also present.

Related literature

For the synthesis, see: Mansuroğlu et al. (2008 [triangle]); Arslan et al. (2003a [triangle],b [triangle]); Binzet et al. (2006 [triangle]). For general background, see: Arslan et al. (2006a [triangle],b [triangle], 2007 [triangle]); Kemp et al. (1997 [triangle]); Koch et al. (1995 [triangle]); Nencki (1873 [triangle]); Özpozan et al. (2000 [triangle]). For related compounds, see: Arslan et al. (2003a [triangle], 2006b [triangle], 2007 [triangle]); Dong et al. (2008 [triangle]); Duque et al. (2008 [triangle]); Tutughamiarso & Bolte (2007 [triangle]); Yue et al. (2008 [triangle]); Yusof et al. (2008a [triangle],b [triangle]); Xian (2008 [triangle]); Thiam et al. (2008 [triangle]); Binzet et al. (2006 [triangle]); Uğur et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-00o81-scheme1.jpg

Experimental

Crystal data

  • C14H12ClN3OS
  • M r = 305.78
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-00o81-efi1.jpg
  • a = 8.255 (3) Å
  • b = 9.030 (3) Å
  • c = 9.957 (3) Å
  • α = 80.810 (7)°
  • β = 66.552 (7)°
  • γ = 87.269 (7)°
  • V = 672.1 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.44 mm−1
  • T = 120 (2) K
  • 0.20 × 0.14 × 0.10 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2002 [triangle]) T min = 0.918, T max = 0.958
  • 3651 measured reflections
  • 2609 independent reflections
  • 1492 reflections with I > 2σ(I)
  • R int = 0.100

Refinement

  • R[F 2 > 2σ(F 2)] = 0.077
  • wR(F 2) = 0.266
  • S = 0.98
  • 2609 reflections
  • 182 parameters
  • H-atom parameters constrained
  • Δρmax = 0.81 e Å−3
  • Δρmin = −0.50 e Å−3

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT (Bruker, 2002 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808041123/hg2444sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808041123/hg2444Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by Mersin University Research Fund (Project Nos. BAP-ECZ-F-TBB-(HA) 2004–3 and BAP-FEF-KB-(NK) 2006–3).

supplementary crystallographic information

Comment

Thiourea derivatives, first synthesized by Nencki, 1873, are very flexible ligands and able to coordinate to a range of metal centers as neutral ligands, monoanions or dianions (Mansuroğlu et al., 2008; Arslan et al., 2003b, 2006a; Binzet et al., 2006; Kemp et al., 1997; Koch et al., 1995). In addition, the oxygen, nitrogen and sulfur donors provide a multitude of bonding possibilities. The coordination chemistry of substituted thioureas has led to some interesting practical applications such as liquid–liquid extraction, pre-concentration and highly efficient chromatographic separation (Kemp et al., 1997; Koch et al., 1995).

Our team focused on the synthesis, characterization, crystal structure, thermal behavior and antimicrobial activity of new thiourea derivatives (Mansuroğlu et al., 2008; Arslan et al., 2003a, 2003b, 2006a, 2006b, 2007; Uğur et al., 2006; Özpozan et al., 2000). In this article, we report the preparation and characterization of a novel thiourea compound, 4-chloro-N-(6-methylpyridin-2-yl-carbamothioyl)benzamide (I), and its crystal structure. The title compound was purified by re-crystallization from ethanol:dichloromethane mixture (1:2) and characterized by elemental analysis. The analytical data is consistent with the proposed structure given in Scheme 1.

The molecular structure and packing diagram are depicted in Figure 1 and 2, respectively. The bond lengths and angles in the thiourea moiety are typical for thiourea derivatives; the C8—S1 and C7—O1 bonds both show a typical double-bond character with 1.655 (5) and 1.203 (6) Å, respectively. The short bond lengths of the N1—C7, 1.395 (7); N1—C8, 1.376 (6) and N2—C8, 1.364 (6) Å bonds indicate partial double bond character. These results can be explained by the existence of resonance in this part of the molecule. The other C—N bond length is within the expected range.

A lot of substitute benzoylthiourea derivatives have cis-trans configurations (Yusof, et al., 2008a, 2008b; Thiam, et al., 2008; Xian, 2008; Dong, et al., 2008; Duque, et al., 2008). However, the title compound shows an intramolecular N—H···N hydrogen bond (Table 1) which results in the formation of a six membered ring (N3—C9—N2—C8—N1—H1) and leads to a syn-periplanar conformation between the thiocarbonyl group carbon atom and the pyridine group nitrogen atom (Tutughamiarso & Bolte, 2007; Yue et al., 2008). The torsion angles in this region, C8—N2—C9—N3, 14.9 (9)° and C9—N2—C8—N1, -7.2 (8)° confirm this conformation. This formation forces the two amide hydrogen atoms to the opposite direction.

The carbonyl and thiocarbonyl part is essentially planar, as reflected by the torsional angles O1—C7—N1—C8, C7—N1—C8—S1 and C7—N1—C8—N2 of 1.7 (9), 0.3 (8) and 179.3 (5) °, respectively. O1, C7, N1, C8 and S1 fragment is also planar (maximum and mean deviations are 0.010 and 0.005 Å, respectively).

The crystal packing is shown in Fig. 2. There are two intermolecular, N—H···S and C—H···O, hydrogen bonds which connect molecules in chains parallel to [100].

Experimental

The compound was prepared with a procedure similar to that reported in the literature (Arslan et al., 2003b, 2006a). A solution of 4-chloro-benzoyl chloride (0.01 mol) in acetone (50 cm3) was added dropwise to a suspension of potassium thiocyanate (0.01 mol) in acetone (30 cm3). The reaction mixture was heated under reflux for 30 min, and then cooled to room temperature. A solution of 6-methylpyridin-2-amine (0.01 mol) in acetone (10 cm3) was added and the resulting mixture was stirred for 2 h. Hydrochloric acid (0.1 N, 300 cm3) was added to the solution, which was then filtered. The solid product was washed with water and purifed by recrystalization from an ethanol:dichloromethane mixture (1:2). Anal. Calcd. for C14H12ClN3OS: C, 55.0; H, 4.0; N, 13.7. Found: C, 55.1; H, 3.9; N, 13.7%.

Figures

Fig. 1.
The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level.
Fig. 2.
Packing diagram for (I) viewed along a-direction. Hydrogen bonds shown as dotted lines.

Crystal data

C14H12ClN3OSZ = 2
Mr = 305.78F(000) = 316
Triclinic, P1Dx = 1.511 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.255 (3) ÅCell parameters from 716 reflections
b = 9.030 (3) Åθ = 2.3–26.3°
c = 9.957 (3) ŵ = 0.44 mm1
α = 80.810 (7)°T = 120 K
β = 66.552 (7)°Prism, yellow
γ = 87.269 (7)°0.20 × 0.14 × 0.10 mm
V = 672.1 (4) Å3

Data collection

Bruker SMART CCD area-detector diffractometer2609 independent reflections
Radiation source: sealed tube1492 reflections with I > 2σ(I)
graphiteRint = 0.100
[var phi] and ω scansθmax = 26.4°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2002)h = −10→10
Tmin = 0.918, Tmax = 0.958k = −11→5
3651 measured reflectionsl = −12→10

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.077Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.266H-atom parameters constrained
S = 0.98w = 1/[σ2(Fo2) + (0.1601P)2] where P = (Fo2 + 2Fc2)/3
2609 reflections(Δ/σ)max < 0.001
182 parametersΔρmax = 0.81 e Å3
0 restraintsΔρmin = −0.50 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl1−0.0760 (2)−0.08311 (16)0.24521 (19)0.0469 (5)
S10.4068 (2)0.83271 (15)0.20068 (15)0.0316 (5)
O10.2334 (6)0.5331 (4)0.3623 (4)0.0370 (10)
N10.2869 (6)0.6040 (5)0.1158 (5)0.0296 (11)
H1B0.27300.57250.04180.036*
N20.4090 (6)0.8104 (5)−0.0583 (5)0.0282 (11)
H2B0.44620.9040−0.07600.034*
N30.3162 (6)0.6306 (5)−0.1620 (5)0.0253 (10)
C10.0432 (8)0.2777 (6)0.3757 (6)0.0347 (14)
H1A0.01830.31410.46620.042*
C2−0.0314 (8)0.1427 (6)0.3760 (7)0.0394 (15)
H2A−0.11220.08880.46610.047*
C30.0122 (8)0.0878 (6)0.2450 (6)0.0322 (13)
C40.1259 (8)0.1664 (6)0.1110 (6)0.0365 (15)
H4A0.15370.12800.02110.044*
C50.1987 (7)0.3030 (6)0.1107 (6)0.0264 (12)
H5A0.27830.35720.02010.032*
C60.1558 (7)0.3597 (5)0.2407 (6)0.0258 (12)
C70.2278 (7)0.5061 (6)0.2497 (6)0.0272 (12)
C80.3644 (6)0.7438 (5)0.0850 (6)0.0208 (11)
C90.4067 (7)0.7576 (6)−0.1828 (6)0.0261 (12)
C100.5010 (7)0.8375 (6)−0.3213 (6)0.0291 (13)
H10A0.57010.9232−0.33210.035*
C110.4925 (8)0.7902 (6)−0.4435 (6)0.0316 (13)
H11A0.55030.8463−0.53940.038*
C120.3987 (7)0.6598 (6)−0.4245 (6)0.0287 (13)
H12A0.39130.6251−0.50710.034*
C130.3156 (7)0.5806 (6)−0.2823 (6)0.0229 (12)
C140.2159 (8)0.4360 (6)−0.2553 (7)0.0322 (13)
H14A0.28460.3515−0.23270.048*
H14B0.19650.4249−0.34410.048*
H14C0.10180.4375−0.17150.048*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0577 (11)0.0250 (8)0.0548 (11)−0.0248 (7)−0.0183 (9)−0.0001 (7)
S10.0473 (10)0.0223 (7)0.0274 (8)−0.0173 (6)−0.0164 (7)−0.0004 (6)
O10.053 (3)0.030 (2)0.029 (2)−0.0182 (19)−0.017 (2)−0.0027 (17)
N10.043 (3)0.023 (2)0.022 (2)−0.019 (2)−0.009 (2)−0.0055 (19)
N20.038 (3)0.020 (2)0.027 (2)−0.0162 (19)−0.013 (2)−0.0017 (18)
N30.024 (2)0.022 (2)0.034 (3)−0.0071 (18)−0.015 (2)−0.0014 (19)
C10.059 (4)0.022 (3)0.019 (3)−0.015 (3)−0.012 (3)0.004 (2)
C20.045 (4)0.027 (3)0.034 (3)−0.022 (3)−0.003 (3)0.003 (3)
C30.040 (3)0.022 (3)0.029 (3)−0.019 (2)−0.009 (3)0.005 (2)
C40.064 (4)0.021 (3)0.024 (3)−0.014 (3)−0.017 (3)0.001 (2)
C50.033 (3)0.020 (3)0.026 (3)−0.013 (2)−0.015 (2)0.007 (2)
C60.030 (3)0.017 (3)0.030 (3)−0.008 (2)−0.013 (3)0.004 (2)
C70.035 (3)0.020 (3)0.027 (3)−0.009 (2)−0.015 (3)0.002 (2)
C80.020 (3)0.017 (2)0.029 (3)0.000 (2)−0.016 (2)0.004 (2)
C90.043 (3)0.017 (3)0.020 (3)−0.009 (2)−0.016 (3)0.004 (2)
C100.036 (3)0.020 (3)0.032 (3)−0.013 (2)−0.015 (3)0.003 (2)
C110.047 (4)0.020 (3)0.024 (3)−0.013 (2)−0.011 (3)0.001 (2)
C120.036 (3)0.025 (3)0.024 (3)−0.014 (2)−0.010 (2)−0.004 (2)
C130.027 (3)0.021 (3)0.026 (3)−0.004 (2)−0.016 (2)0.001 (2)
C140.042 (3)0.024 (3)0.038 (3)−0.011 (2)−0.022 (3)−0.006 (2)

Geometric parameters (Å, °)

Cl1—C31.737 (5)C4—C51.396 (7)
S1—C81.655 (5)C4—H4A0.9500
O1—C71.203 (6)C5—C61.376 (7)
N1—C81.376 (6)C5—H5A0.9500
N1—C71.395 (7)C6—C71.504 (7)
N1—H1B0.8800C9—C101.382 (7)
N2—C81.364 (6)C10—C111.379 (7)
N2—C91.405 (6)C10—H10A0.9500
N2—H2B0.8800C11—C121.386 (7)
N3—C91.341 (6)C11—H11A0.9500
N3—C131.347 (7)C12—C131.392 (7)
C1—C21.391 (7)C12—H12A0.9500
C1—C61.405 (7)C13—C141.506 (7)
C1—H1A0.9500C14—H14A0.9800
C2—C31.375 (8)C14—H14B0.9800
C2—H2A0.9500C14—H14C0.9800
C3—C41.390 (8)
C8—N1—C7128.0 (4)O1—C7—C6122.3 (5)
C8—N1—H1B116.0N1—C7—C6113.2 (4)
C7—N1—H1B116.0N2—C8—N1113.5 (4)
C8—N2—C9132.1 (4)N2—C8—S1119.5 (4)
C8—N2—H2B113.9N1—C8—S1127.1 (4)
C9—N2—H2B113.9N3—C9—C10123.1 (5)
C9—N3—C13118.0 (5)N3—C9—N2118.5 (5)
C2—C1—C6119.5 (5)C10—C9—N2118.3 (5)
C2—C1—H1A120.2C11—C10—C9118.6 (5)
C6—C1—H1A120.2C11—C10—H10A120.7
C3—C2—C1119.7 (5)C9—C10—H10A120.7
C3—C2—H2A120.2C10—C11—C12119.2 (5)
C1—C2—H2A120.2C10—C11—H11A120.4
C2—C3—C4121.4 (5)C12—C11—H11A120.4
C2—C3—Cl1119.9 (4)C11—C12—C13118.8 (5)
C4—C3—Cl1118.7 (4)C11—C12—H12A120.6
C3—C4—C5118.8 (5)C13—C12—H12A120.6
C3—C4—H4A120.6N3—C13—C12122.1 (5)
C5—C4—H4A120.6N3—C13—C14116.7 (5)
C6—C5—C4120.5 (5)C12—C13—C14121.2 (5)
C6—C5—H5A119.8C13—C14—H14A109.5
C4—C5—H5A119.8C13—C14—H14B109.5
C5—C6—C1120.1 (5)H14A—C14—H14B109.5
C5—C6—C7123.7 (5)C13—C14—H14C109.5
C1—C6—C7116.2 (5)H14A—C14—H14C109.5
O1—C7—N1124.4 (5)H14B—C14—H14C109.5
C6—C1—C2—C33.0 (10)C9—N2—C8—N1−7.2 (8)
C1—C2—C3—C4−1.9 (10)C9—N2—C8—S1172.4 (5)
C1—C2—C3—Cl1178.3 (5)C7—N1—C8—N2179.3 (5)
C2—C3—C4—C50.9 (10)C7—N1—C8—S1−0.3 (8)
Cl1—C3—C4—C5−179.3 (4)C13—N3—C9—C10−1.1 (8)
C3—C4—C5—C6−1.2 (9)C13—N3—C9—N2−179.7 (4)
C4—C5—C6—C12.3 (9)C8—N2—C9—N314.9 (9)
C4—C5—C6—C7−179.8 (5)C8—N2—C9—C10−163.8 (5)
C2—C1—C6—C5−3.3 (9)N3—C9—C10—C114.4 (9)
C2—C1—C6—C7178.7 (5)N2—C9—C10—C11−177.0 (5)
C8—N1—C7—O11.7 (9)C9—C10—C11—C12−3.7 (8)
C8—N1—C7—C6−177.9 (5)C10—C11—C12—C130.1 (9)
C5—C6—C7—O1−157.3 (6)C9—N3—C13—C12−2.8 (8)
C1—C6—C7—O120.7 (8)C9—N3—C13—C14178.7 (5)
C5—C6—C7—N122.3 (8)C11—C12—C13—N33.3 (8)
C1—C6—C7—N1−159.7 (5)C11—C12—C13—C14−178.3 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C12—H12A···O1i0.952.423.303 (7)154
N2—H2B···S1ii0.882.613.464 (5)165
N1—H1B···N30.881.902.651 (7)142

Symmetry codes: (i) x, y, z−1; (ii) −x+1, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2444).

References

  • Arslan, H., Flörke, U. & Külcü, N. (2003a). J. Chem. Crystallogr.33, 919–924.
  • Arslan, H., Flörke, U. & Külcü, N. (2007). Spectrochim. Acta A, 67, 936–943. [PubMed]
  • Arslan, H., Flörke, U., Külcü, N. & Emen, M. F. (2006a). J. Coord. Chem.59, 223–228.
  • Arslan, H., Külcü, N. & Flörke, U. (2003b). Transition Met. Chem.28, 816–819.
  • Arslan, H., Külcü, N. & Flörke, U. (2006b). Spectrochim. Acta A, 64, 1065–1071. [PubMed]
  • Binzet, G., Arslan, H., Flörke, U., Külcü, N. & Duran, N. (2006). J. Coord. Chem.59, 1395–1406.
  • Bruker (2002). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Dong, W.-K., Yan, H.-B., Chai, L.-Q., Lv, Z.-W. & Zhao, C.-Y. (2008). Acta Cryst. E64, o1097. [PMC free article] [PubMed]
  • Duque, J., Estevez-Hernandez, O., Reguera, E., Corrêa, R. S. & Gutierrez Maria, P. (2008). Acta Cryst. E64, o1068.
  • Kemp, G., Roodt, A., Purcell, W. & Koch, K. R. (1997). J. Chem. Soc. Dalton Trans.23, 4481–4483.
  • Koch, K. R., Sacht, C., Grimmbacher, T. & Bourne, S. (1995). S. Afr. J. Chem.48, 71–77.
  • Mansuroğlu, D. S., Arslan, H., Flörke, U. & Külcü, N. (2008). J. Coord. Chem.61, 3134–3146.
  • Nencki, M. (1873). Ber. Dtsch. Chem. Ges.6, 598–600.
  • Özpozan, N., Arslan, H., Ozpozan, T., Ozdes, N. & Külcü, N. (2000). Thermochim. Acta, 343, 127–133.
  • Sheldrick, G. M. (2008). Acta Cryst A64, 112–122. [PubMed]
  • Thiam, E. I., Diop, M., Gaye, M., Sall, A. S. & Barry, A. H. (2008). Acta Cryst. E64, o776. [PMC free article] [PubMed]
  • Tutughamiarso, M. & Bolte, M. (2007). Acta Cryst. E63, o4682.
  • Uğur, D., Arslan, H. & Külcü, N. (2006). Russ. J. Coord. Chem.32, 669–675.
  • Xian, L. (2008). Acta Cryst. E64, o1969. [PMC free article] [PubMed]
  • Yue, H., Wang, Y., Xia, A., Luo, S. & Xu, D. (2008). Acta Cryst. E64, o858. [PMC free article] [PubMed]
  • Yusof, M. S. M., Ayob, N. A. C., Kadir, M. A. & Yamin, B. M. (2008a). Acta Cryst. E64, o937. [PMC free article] [PubMed]
  • Yusof, M. S. M., Muharam, S. H., Kassim, M. B. & Yamin, B. M. (2008b). Acta Cryst. E64, o1137. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography