PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 January 1; 65(Pt 1): o74.
Published online 2008 December 10. doi:  10.1107/S1600536808040919
PMCID: PMC2967984

N′-[1-(4-Nitro­phen­yl)ethyl­idene]acetohydrazide

Abstract

The title compound, C10H11N3O3, was prepared by the reaction of acetohydrazide and 1-(4-nitro­phen­yl)ethanone. The asymmetric unit contains two crystallographically independent mol­ecules. Inversion-related mol­ecules form dimers, in which two N—H(...)O hydrogen bonds generate an inter­molecular R 2 2(8) ring.

Related literature

For possibile analytical applications of Schiff bases, see: Cimerman et al. (1997 [triangle]). For a related structure, see: Girgis (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-00o74-scheme1.jpg

Experimental

Crystal data

  • C10H11N3O3
  • M r = 221.22
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-00o74-efi1.jpg
  • a = 8.4453 (17) Å
  • b = 9.5438 (19) Å
  • c = 14.820 (3) Å
  • α = 72.66 (3)°
  • β = 77.37 (3)°
  • γ = 75.59 (3)°
  • V = 1090.7 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 293 (2) K
  • 0.25 × 0.20 × 0.18 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: none
  • 6035 measured reflections
  • 4037 independent reflections
  • 2570 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052
  • wR(F 2) = 0.159
  • S = 1.04
  • 4037 reflections
  • 297 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.22 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808040919/at2663sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808040919/at2663Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Schiff bases have received considerable attention in the literature. They are attractive from several points of view, such as the possibility of analytical application (Cimerman, et al., 1997). As part of our search for new schiff base compounds we synthesized the title compound (I), and describe its structure here.

As shown in Fig. 1, the asymmetric unit contains two crystallographically independent molecules. The C3—N2 bond length of 1.277 (3) Å and C13—N5 bond length of 1.287 (3) Å is comparable with C—N double bond [1.281 (2) Å] reported (Girgis, 2006).

In the structure, there exist C-H···O, C-H···N and N-H···N hydrogen bonding interactions. Inversion-related molecules form a dimer structure, in which two N—H···O hydrogen bonds generate an intermolecular R22(8) ring (Table 1).

Experimental

A mixture of the acetohydrazide (0.1 mol), and 1-(4-nitrophenyl)ethanone (0.1 mol) was stirred in refluxing ethanol (20 mL) for 4 h to afford the title compound (0.086 mol, yield 86%). Single crystals suitable for X-ray measurements were obtained by recrystallization from ethanol at room temperature.

Refinement

N-bonded H atoms were found from a difference Fourier map and refined freely. C-bonded H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H = 0.93-0.96 Å, and with Uiso=1.2–1.5Ueq.

Figures

Fig. 1.
The structure of the title compound showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Crystal data

C10H11N3O3Z = 4
Mr = 221.22F(000) = 464
Triclinic, P1Dx = 1.347 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.4453 (17) ÅCell parameters from 1553 reflections
b = 9.5438 (19) Åθ = 2.9–23.0°
c = 14.820 (3) ŵ = 0.10 mm1
α = 72.66 (3)°T = 293 K
β = 77.37 (3)°Block, yellow
γ = 75.59 (3)°0.25 × 0.20 × 0.18 mm
V = 1090.7 (4) Å3

Data collection

Bruker SMART CCD area-detector diffractometer2570 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.027
graphiteθmax = 25.5°, θmin = 2.3°
[var phi] and ω scansh = −10→10
6035 measured reflectionsk = −8→11
4037 independent reflectionsl = −17→17

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H atoms treated by a mixture of independent and constrained refinement
S = 1.04w = 1/[σ2(Fo2) + (0.0784P)2 + 0.1468P] where P = (Fo2 + 2Fc2)/3
4037 reflections(Δ/σ)max < 0.001
297 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = −0.21 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N50.6357 (2)0.18317 (19)0.43057 (12)0.0478 (4)
N40.6040 (2)0.3087 (2)0.46328 (13)0.0517 (5)
C200.7190 (3)−0.0804 (3)0.37732 (16)0.0553 (6)
H20A0.7913−0.05770.40760.066*
O40.6882 (2)0.4455 (2)0.53613 (14)0.0762 (6)
C130.5290 (2)0.1642 (2)0.38741 (14)0.0463 (5)
C150.5727 (3)0.0223 (2)0.35793 (14)0.0458 (5)
C180.6510 (3)−0.2475 (3)0.30826 (16)0.0540 (6)
C190.7587 (3)−0.2144 (3)0.35260 (17)0.0585 (6)
H19A0.8567−0.28140.36570.070*
C160.4685 (3)−0.0151 (3)0.31179 (16)0.0574 (6)
H16A0.37080.05160.29750.069*
N60.6913 (3)−0.3924 (2)0.28399 (15)0.0688 (6)
C120.7182 (3)0.3345 (3)0.50456 (18)0.0597 (6)
O60.5902 (3)−0.4215 (2)0.24812 (16)0.0985 (7)
O50.8220 (3)−0.4769 (2)0.30177 (14)0.0845 (6)
C140.3713 (3)0.2712 (3)0.36615 (19)0.0659 (7)
H14A0.36140.35680.38980.099*
H14B0.27940.22290.39670.099*
H14C0.37190.30280.29820.099*
C170.5074 (3)−0.1501 (3)0.28661 (17)0.0629 (6)
H17A0.4370−0.17380.25560.076*
N20.3467 (2)0.3952 (2)0.09154 (13)0.0517 (5)
O1−0.0396 (2)0.6256 (2)0.07168 (13)0.0729 (5)
N10.1929 (2)0.4531 (2)0.06573 (15)0.0559 (5)
C100.6576 (3)0.3176 (2)0.14039 (15)0.0505 (5)
H10A0.58930.40610.15070.061*
C30.4436 (3)0.2916 (2)0.05675 (15)0.0497 (5)
C80.9053 (3)0.1382 (3)0.15882 (16)0.0537 (6)
C50.6075 (3)0.2378 (2)0.09008 (15)0.0468 (5)
C60.7135 (3)0.1075 (3)0.07434 (17)0.0601 (6)
H6A0.68340.05340.04020.072*
C90.8052 (3)0.2683 (2)0.17494 (16)0.0532 (6)
H9A0.83690.32220.20870.064*
C70.8626 (3)0.0568 (3)0.10851 (18)0.0640 (7)
H7A0.9327−0.03070.09770.077*
C20.0951 (3)0.5678 (3)0.09904 (17)0.0555 (6)
N31.0610 (3)0.0837 (3)0.19712 (18)0.0759 (6)
C10.1551 (3)0.6207 (3)0.16819 (19)0.0722 (7)
H1B0.07410.70250.18560.108*
H1C0.25740.65340.13900.108*
H1D0.17240.54020.22440.108*
C40.4032 (3)0.2229 (3)−0.0121 (2)0.0814 (9)
H4B0.29380.2695−0.02640.122*
H4C0.40840.11760.01600.122*
H4D0.48160.2376−0.07010.122*
O31.0875 (3)0.1457 (3)0.2518 (2)0.1159 (9)
O21.1593 (3)−0.0208 (3)0.1728 (2)0.1231 (10)
C110.8785 (3)0.2256 (3)0.5105 (3)0.0922 (10)
H11A0.94740.25740.54100.138*
H11B0.93310.22080.44710.138*
H11C0.85820.12850.54700.138*
H4A0.513 (3)0.378 (3)0.4600 (17)0.071 (8)*
H1A0.162 (3)0.426 (3)0.0248 (17)0.054 (7)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N50.0487 (10)0.0441 (10)0.0552 (10)−0.0028 (8)−0.0128 (8)−0.0215 (8)
N40.0477 (11)0.0475 (11)0.0665 (12)0.0030 (9)−0.0180 (9)−0.0281 (9)
C200.0533 (13)0.0543 (14)0.0685 (15)−0.0050 (11)−0.0214 (11)−0.0269 (12)
O40.0687 (11)0.0712 (12)0.1096 (14)0.0064 (9)−0.0348 (10)−0.0562 (11)
C130.0445 (11)0.0492 (13)0.0455 (11)−0.0056 (10)−0.0105 (9)−0.0132 (10)
C150.0492 (12)0.0451 (12)0.0441 (11)−0.0079 (10)−0.0100 (9)−0.0122 (9)
C180.0669 (15)0.0476 (13)0.0536 (13)−0.0128 (11)−0.0091 (11)−0.0209 (10)
C190.0583 (14)0.0495 (14)0.0731 (15)−0.0017 (11)−0.0171 (12)−0.0262 (12)
C160.0570 (13)0.0577 (14)0.0645 (14)−0.0059 (11)−0.0239 (11)−0.0204 (12)
N60.0906 (17)0.0570 (14)0.0680 (13)−0.0219 (13)−0.0070 (12)−0.0275 (11)
C120.0513 (13)0.0621 (15)0.0749 (16)0.0020 (11)−0.0226 (12)−0.0328 (13)
O60.1239 (17)0.0867 (15)0.1170 (17)−0.0298 (13)−0.0324 (14)−0.0567 (13)
O50.0999 (16)0.0583 (12)0.0976 (15)−0.0030 (11)−0.0112 (12)−0.0367 (11)
C140.0587 (15)0.0656 (16)0.0808 (17)0.0078 (12)−0.0275 (13)−0.0345 (13)
C170.0732 (16)0.0644 (16)0.0653 (15)−0.0189 (13)−0.0224 (13)−0.0250 (13)
N20.0469 (10)0.0518 (11)0.0593 (11)−0.0039 (9)−0.0174 (9)−0.0169 (9)
O10.0565 (10)0.0775 (12)0.0890 (12)0.0072 (9)−0.0307 (9)−0.0306 (10)
N10.0523 (11)0.0576 (12)0.0642 (12)−0.0025 (9)−0.0227 (10)−0.0222 (10)
C100.0500 (13)0.0439 (12)0.0622 (13)−0.0045 (10)−0.0143 (10)−0.0204 (10)
C30.0524 (13)0.0453 (13)0.0557 (13)−0.0062 (10)−0.0169 (10)−0.0164 (10)
C80.0481 (12)0.0546 (14)0.0582 (13)−0.0047 (11)−0.0146 (10)−0.0141 (11)
C50.0485 (12)0.0460 (12)0.0483 (12)−0.0071 (10)−0.0115 (9)−0.0148 (10)
C60.0635 (15)0.0550 (14)0.0718 (15)0.0016 (12)−0.0231 (12)−0.0330 (12)
C90.0518 (13)0.0522 (14)0.0634 (14)−0.0092 (11)−0.0140 (11)−0.0237 (11)
C70.0594 (15)0.0549 (15)0.0794 (17)0.0070 (12)−0.0170 (12)−0.0305 (13)
C20.0506 (13)0.0542 (14)0.0624 (14)−0.0043 (11)−0.0173 (11)−0.0148 (11)
N30.0552 (13)0.0743 (16)0.1008 (18)0.0038 (12)−0.0305 (12)−0.0271 (13)
C10.0635 (15)0.0743 (18)0.0880 (19)0.0043 (13)−0.0270 (14)−0.0383 (15)
C40.0746 (18)0.087 (2)0.105 (2)0.0091 (15)−0.0418 (16)−0.0579 (18)
O30.0844 (15)0.132 (2)0.159 (2)0.0139 (14)−0.0718 (15)−0.0699 (18)
O20.0765 (14)0.1116 (19)0.196 (3)0.0364 (14)−0.0630 (16)−0.0769 (19)
C110.0635 (17)0.089 (2)0.148 (3)0.0211 (15)−0.0522 (18)−0.070 (2)

Geometric parameters (Å, °)

N5—C131.287 (3)N1—C21.349 (3)
N5—N41.368 (2)N1—H1A0.83 (2)
N4—C121.353 (3)C10—C91.372 (3)
N4—H4A0.88 (3)C10—C51.397 (3)
C20—C191.376 (3)C10—H10A0.9300
C20—C151.398 (3)C3—C51.489 (3)
C20—H20A0.9300C3—C41.500 (3)
O4—C121.231 (3)C8—C91.371 (3)
C13—C151.481 (3)C8—C71.376 (3)
C13—C141.493 (3)C8—N31.460 (3)
C15—C161.391 (3)C5—C61.389 (3)
C18—C171.367 (3)C6—C71.380 (3)
C18—C191.374 (3)C6—H6A0.9300
C18—N61.472 (3)C9—H9A0.9300
C19—H19A0.9300C7—H7A0.9300
C16—C171.389 (3)C2—C11.492 (3)
C16—H16A0.9300N3—O21.218 (3)
N6—O61.222 (3)N3—O31.219 (3)
N6—O51.223 (3)C1—H1B0.9600
C12—C111.489 (3)C1—H1C0.9600
C14—H14A0.9600C1—H1D0.9600
C14—H14B0.9600C4—H4B0.9600
C14—H14C0.9600C4—H4C0.9600
C17—H17A0.9300C4—H4D0.9600
N2—C31.277 (3)C11—H11A0.9600
N2—N11.368 (3)C11—H11B0.9600
O1—C21.232 (3)C11—H11C0.9600
C13—N5—N4119.06 (18)C5—C10—H10A119.3
C12—N4—N5119.98 (19)N2—C3—C5115.09 (19)
C12—N4—H4A114.2 (17)N2—C3—C4125.2 (2)
N5—N4—H4A125.8 (17)C5—C3—C4119.7 (2)
C19—C20—C15121.5 (2)C9—C8—C7122.0 (2)
C19—C20—H20A119.2C9—C8—N3118.9 (2)
C15—C20—H20A119.2C7—C8—N3119.1 (2)
N5—C13—C15114.65 (18)C6—C5—C10117.9 (2)
N5—C13—C14125.5 (2)C6—C5—C3122.1 (2)
C15—C13—C14119.81 (19)C10—C5—C3120.00 (19)
C16—C15—C20117.6 (2)C7—C6—C5121.2 (2)
C16—C15—C13121.3 (2)C7—C6—H6A119.4
C20—C15—C13121.07 (18)C5—C6—H6A119.4
C17—C18—C19121.9 (2)C8—C9—C10118.8 (2)
C17—C18—N6119.2 (2)C8—C9—H9A120.6
C19—C18—N6118.9 (2)C10—C9—H9A120.6
C18—C19—C20118.9 (2)C8—C7—C6118.7 (2)
C18—C19—H19A120.6C8—C7—H7A120.7
C20—C19—H19A120.6C6—C7—H7A120.7
C17—C16—C15121.3 (2)O1—C2—N1119.6 (2)
C17—C16—H16A119.4O1—C2—C1122.2 (2)
C15—C16—H16A119.4N1—C2—C1118.3 (2)
O6—N6—O5123.9 (2)O2—N3—O3122.8 (2)
O6—N6—C18117.5 (2)O2—N3—C8118.8 (2)
O5—N6—C18118.5 (2)O3—N3—C8118.4 (2)
O4—C12—N4120.0 (2)C2—C1—H1B109.5
O4—C12—C11121.8 (2)C2—C1—H1C109.5
N4—C12—C11118.2 (2)H1B—C1—H1C109.5
C13—C14—H14A109.5C2—C1—H1D109.5
C13—C14—H14B109.5H1B—C1—H1D109.5
H14A—C14—H14B109.5H1C—C1—H1D109.5
C13—C14—H14C109.5C3—C4—H4B109.5
H14A—C14—H14C109.5C3—C4—H4C109.5
H14B—C14—H14C109.5H4B—C4—H4C109.5
C18—C17—C16118.8 (2)C3—C4—H4D109.5
C18—C17—H17A120.6H4B—C4—H4D109.5
C16—C17—H17A120.6H4C—C4—H4D109.5
C3—N2—N1120.00 (19)C12—C11—H11A109.5
C2—N1—N2119.4 (2)C12—C11—H11B109.5
C2—N1—H1A118.7 (16)H11A—C11—H11B109.5
N2—N1—H1A121.5 (16)C12—C11—H11C109.5
C9—C10—C5121.4 (2)H11A—C11—H11C109.5
C9—C10—H10A119.3H11B—C11—H11C109.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.84 (3)2.16 (3)2.989 (3)170 (2)
N4—H4A···O4ii0.88 (3)2.08 (3)2.952 (3)172 (2)
C4—H4B···N10.962.422.826 (3)105
C4—H4B···O1i0.962.283.243 (3)175
C10—H10A···O6iii0.932.493.216 (3)135
C14—H14A···N40.962.412.821 (3)105
C14—H14A···O4ii0.962.363.317 (3)173
C16—H16A···O3iv0.932.503.388 (4)159
C20—H20A···N50.932.432.740 (3)100

Symmetry codes: (i) −x, −y+1, −z; (ii) −x+1, −y+1, −z+1; (iii) x, y+1, z; (iv) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2663).

References

  • Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cimerman, Z., Galic, N. & Bosner, B. (1997). Anal. Chim. Acta, 343, 145–153.
  • Girgis, A. S. (2006). J. Chem. Res pp. 81–85.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography