PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 January 1; 65(Pt 1): o68–o69.
Published online 2008 December 10. doi:  10.1107/S1600536808038014
PMCID: PMC2967979

4,4′-Dichloro-2,2′-[2,2-dimethyl­propane-1,3-diylbis(nitrilo­methyl­idyne)]diphenol

Abstract

The crystal of the title Schiff base compound, C19H20Cl2N2O2, contains of two crystallographically independent mol­ecules with similar conformations. In each mol­ecule, two intramolecular O—H(...)N bonds generate S(6) motifs. The N atoms are also in close proximity to two H atoms of the dimethyl­propane groups, with H(...)N distances between 2.59 and 2.62 Å. The imine group is coplanar with the benzene ring. The dihedral angles between the benzene rings in the two independent mol­ecules are 58.20 (12) and 47.95 (12)°. The structure displays short inter­molecular Cl(...)Cl [3.3869 (11) Å] and Cl(...)O [3.175 (2)–3.204 (2) Å] inter­actions. The crystal structure is further stabilized by weak inter­molecular C—H(...)O, C—H(...)π and π–π [centroid–centroid distances 3.6416 (13)–3.8705 (14) Å] inter­actions.

Related literature

For the values of bond lengths, see: Allen et al. (1987 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]). For information on Schiff base ligands and complexes and their applications, see: Calligaris & Randaccio (1987 [triangle]); Casellato & Vigato (1977 [triangle]). For similar structures, see: Bomfim et al. (2005 [triangle]); Fun et al. (2008 [triangle]); Glidewell et al. (2005 [triangle], 2006 [triangle]); Li et al. (2005 [triangle]); Sun et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-00o68-scheme1.jpg

Experimental

Crystal data

  • C19H20Cl2N2O2
  • M r = 379.27
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-00o68-efi1.jpg
  • a = 31.6843 (8) Å
  • b = 6.2236 (2) Å
  • c = 37.9015 (10) Å
  • β = 99.779 (1)°
  • V = 7365.2 (4) Å3
  • Z = 16
  • Mo Kα radiation
  • μ = 0.37 mm−1
  • T = 100.0 (1) K
  • 0.35 × 0.06 × 0.04 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.882, T max = 0.986
  • 38685 measured reflections
  • 8427 independent reflections
  • 5995 reflections with I > 2σ(I)
  • R int = 0.071

Refinement

  • R[F 2 > 2σ(F 2)] = 0.061
  • wR(F 2) = 0.116
  • S = 1.12
  • 8426 reflections
  • 467 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.36 e Å−3
  • Δρmin = −0.28 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808038014/is2362sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808038014/is2362Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund (grant No. 305/PFIZIK/613312). RK thanks Universiti Sains Malaysia for an award of a postdoctoral research fellowship. CSY thanks Universiti Sains Malaysia for an award of a student assistantship. HK thanks PNU for the financial support.

supplementary crystallographic information

Comment

In the field of coordination chemistry, Schiff base is one of most prevalent versatile ligands. The Schiff base compounds have received much attention due to their important role in the development of coordination chemistry related to catalysis and enzymatic reaction, magnetism and supramolecular architectures (Casellato & Vigato 1977). In comparison to the Schiff base metal complexes, there is only a relatively small number of free Schiff base ligands which have been characterized structurally (Calligaris & Randaccio, 1987). Structures of Schiff bases derived from substituted benzaldehydes and closely related to the title compound have been reported (Li et al., 2005; Bomfim et al., 2005; Glidewell et al., 2005, 2006; Sun et al., 2004).

In the title compound (I, Fig. 1), bond lengths (Allen et al., 1987) and angles are within the normal ranges and are comparable with the related bromo-substituted compound (Fun et al., 2008). The asymmetric unit of (I) consists of two crystallographically independent molecules A and B. The intramolecular O—H···N hydrogen bonds generate S(6) ring motifs. The nitrogen atoms are also in close proximity to the hydrogen atoms of the dimethylpropane groups with H···N distances between 2.59 and 2.61 Å. The imino group is coplanar with the benzene ring. The dihedral angles between the benzene rings in molecules A and B are 58.20 (18) and 47.95 (12)°, respectively. The interesting feature of the crystal structure is the short intermolecular Cl···Cl [3.3869 (11) Å] and Cl···O [3.175 (2)– 3.204 (2) Å] interactions which are shorter than the sum of the van der Waals radii of the relevant atoms. The short distances between the centroids of the six-membered rings prove existence of π-π interactions [Cg1···Cg1i: 3.8711 (15) Å, (i) -x, -y, -z; Cg2···Cg2ii: 3.6424 (14) Å; (ii) 1/2 - x, 1/2 - y, - z; Cg1 and Cg2 are the centroids of the C12A–C17A and C12B–C17B benzene rings, respectively]. The crystal structures is further stabilized by a weak intermolecular C—H···π interaction.

Experimental

The synthetic method has been described earlier (Fun et al., 2008). Single crystals suitable for X-ray diffraction were obtained by evaporation of an ethanol solution at room temperature.

Refinement

The H atoms of the hydroxy groups were located from the difference Fourier map and refined freely. The rest of the hydrogen atoms were positioned geometrically and refined using a riding model, with C—H = 0.95–0.99 Å and with Uiso(H)= 1.2–1.5Ueq(C). The reflection (002) was omitted as its intensity was affected by the beam backstop.

Figures

Fig. 1.
The molecular structure of (I), with atom labels and 50% probability ellipsoids for non-H atoms. Intramolecular interactions are shown as dashed lines.
Fig. 2.
The crystal packing of (I), viewed down the b axis showing stacking of the molecules. Intermolecular interactions are shown as dashed lines.

Crystal data

C19H20Cl2N2O2F(000) = 3168
Mr = 379.27Dx = 1.368 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5309 reflections
a = 31.6843 (8) Åθ = 3.4–30.1°
b = 6.2236 (2) ŵ = 0.37 mm1
c = 37.9015 (10) ÅT = 100 K
β = 99.779 (1)°Needle, yellow
V = 7365.2 (4) Å30.35 × 0.06 × 0.04 mm
Z = 16

Data collection

Bruker SMART APEXII CCD area-detector diffractometer8427 independent reflections
Radiation source: fine-focus sealed tube5995 reflections with I > 2σ(I)
graphiteRint = 0.071
[var phi] and ω scansθmax = 27.5°, θmin = 1.1°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −40→40
Tmin = 0.882, Tmax = 0.986k = −7→8
38685 measured reflectionsl = −48→48

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.12w = 1/[σ2(Fo2) + (0.0306P)2 + 13.412P] where P = (Fo2 + 2Fc2)/3
8426 reflections(Δ/σ)max = 0.001
467 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = −0.28 e Å3

Special details

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl1A0.20434 (2)0.24028 (13)0.342722 (18)0.02856 (19)
Cl2A−0.10707 (2)0.18921 (13)0.037623 (19)0.02636 (18)
O1A0.19084 (7)−0.3584 (4)0.22147 (6)0.0279 (5)
O2A0.04369 (6)−0.3662 (3)0.04252 (5)0.0210 (5)
N1A0.15011 (7)−0.0613 (4)0.18134 (6)0.0181 (5)
N2A0.09054 (7)−0.0464 (4)0.06983 (5)0.0174 (5)
C1A0.19459 (8)−0.2139 (5)0.24847 (7)0.0192 (6)
C2A0.21551 (8)−0.2762 (5)0.28245 (7)0.0227 (7)
H2AA0.2278−0.41550.28590.027*
C3A0.21833 (8)−0.1362 (5)0.31082 (7)0.0224 (7)
H3AA0.2321−0.18020.33390.027*
C4A0.20119 (8)0.0684 (5)0.30591 (7)0.0194 (6)
C5A0.18131 (8)0.1363 (5)0.27247 (7)0.0183 (6)
H5AA0.17010.27800.26930.022*
C6A0.17774 (8)−0.0043 (5)0.24335 (7)0.0169 (6)
C7A0.15660 (8)0.0679 (5)0.20798 (7)0.0173 (6)
H7AA0.14750.21310.20470.021*
C8A0.12920 (8)0.0176 (5)0.14647 (6)0.0180 (6)
H8AA0.12480.17460.14780.022*
H8AB0.1008−0.05120.14000.022*
C9A0.15625 (8)−0.0312 (5)0.11724 (7)0.0161 (6)
C10A0.13207 (8)0.0569 (5)0.08150 (7)0.0205 (6)
H10A0.12760.21320.08400.025*
H10B0.15000.03650.06280.025*
C11A0.05717 (8)0.0714 (5)0.06549 (6)0.0164 (6)
H11A0.05990.22080.07050.020*
C12A0.01462 (8)−0.0191 (5)0.05293 (6)0.0146 (6)
C13A−0.02175 (8)0.1099 (5)0.05161 (6)0.0166 (6)
H13A−0.01880.25420.05990.020*
C14A−0.06164 (8)0.0290 (5)0.03844 (7)0.0185 (6)
C15A−0.06648 (8)−0.1812 (5)0.02600 (6)0.0189 (6)
H15A−0.0942−0.23550.01670.023*
C16A−0.03102 (8)−0.3103 (5)0.02717 (6)0.0185 (6)
H16A−0.0343−0.45330.01840.022*
C17A0.00971 (8)−0.2331 (5)0.04116 (6)0.0158 (6)
C18A0.19908 (8)0.0873 (5)0.12550 (7)0.0235 (7)
H18A0.21540.03390.14810.035*
H18B0.19390.24160.12760.035*
H18C0.21540.06220.10610.035*
C19A0.16397 (9)−0.2728 (5)0.11457 (7)0.0236 (7)
H19A0.1792−0.32600.13760.035*
H19B0.1813−0.30010.09590.035*
H19C0.1364−0.34700.10850.035*
Cl1B0.45316 (2)0.03381 (13)0.374929 (16)0.02321 (17)
Cl2B0.16982 (2)0.49487 (13)0.022491 (17)0.02330 (17)
O1B0.43547 (7)−0.3355 (4)0.23065 (5)0.0242 (5)
O2B0.31272 (6)−0.1018 (3)0.06627 (5)0.0214 (5)
N1B0.40114 (7)0.0212 (4)0.20579 (5)0.0183 (5)
N2B0.35608 (7)0.2186 (4)0.09782 (5)0.0179 (5)
C1B0.43973 (8)−0.2439 (5)0.26335 (7)0.0174 (6)
C2B0.45942 (8)−0.3620 (5)0.29294 (7)0.0198 (6)
H2BA0.4700−0.50210.28960.024*
C3B0.46363 (8)−0.2767 (5)0.32686 (7)0.0190 (6)
H3BA0.4771−0.35760.34690.023*
C4B0.44814 (8)−0.0720 (5)0.33167 (6)0.0174 (6)
C5B0.42920 (8)0.0493 (5)0.30294 (6)0.0165 (6)
H5BA0.41900.18970.30670.020*
C6B0.42492 (8)−0.0344 (5)0.26820 (7)0.0160 (6)
C7B0.40641 (8)0.0972 (5)0.23753 (7)0.0166 (6)
H7BA0.39820.24110.24120.020*
C8B0.38462 (8)0.1593 (5)0.17565 (6)0.0181 (6)
H8BA0.38000.30560.18450.022*
H8BB0.35670.10320.16350.022*
C9B0.41600 (8)0.1705 (5)0.14872 (6)0.0155 (6)
C10B0.39544 (8)0.3118 (5)0.11726 (7)0.0182 (6)
H10C0.38910.45500.12640.022*
H10D0.41610.33180.10060.022*
C11B0.32341 (8)0.3398 (5)0.08917 (6)0.0168 (6)
H11B0.32480.48600.09650.020*
C12B0.28383 (8)0.2557 (5)0.06813 (6)0.0154 (6)
C13B0.24910 (8)0.3932 (5)0.05820 (6)0.0166 (6)
H13B0.25040.53720.06660.020*
C14B0.21274 (8)0.3199 (5)0.03607 (6)0.0162 (6)
C15B0.21020 (8)0.1105 (5)0.02371 (6)0.0179 (6)
H15B0.18540.06310.00790.021*
C16B0.24363 (8)−0.0291 (5)0.03426 (6)0.0183 (6)
H16B0.2414−0.17390.02620.022*
C17B0.28073 (8)0.0403 (5)0.05664 (6)0.0167 (6)
C18B0.45789 (8)0.2777 (5)0.16634 (7)0.0199 (6)
H18D0.45170.42140.17470.030*
H18E0.47730.28950.14880.030*
H18F0.47140.19060.18670.030*
C19B0.42487 (9)−0.0548 (5)0.13544 (7)0.0211 (6)
H19D0.3979−0.12130.12430.032*
H19E0.4383−0.14280.15570.032*
H19F0.4441−0.04430.11780.032*
H1OA0.1757 (12)−0.292 (7)0.2017 (10)0.059 (12)*
H2OA0.0665 (11)−0.295 (6)0.0505 (9)0.046 (11)*
H1OB0.4234 (11)−0.242 (6)0.2164 (9)0.041 (11)*
H2OB0.3331 (11)−0.033 (6)0.0771 (9)0.048 (12)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl1A0.0378 (4)0.0266 (4)0.0191 (3)0.0004 (4)−0.0016 (3)−0.0006 (3)
Cl2A0.0180 (3)0.0278 (4)0.0317 (4)0.0071 (3)−0.0004 (3)0.0009 (4)
O1A0.0364 (12)0.0192 (12)0.0271 (11)0.0081 (11)0.0025 (9)−0.0016 (10)
O2A0.0201 (10)0.0174 (12)0.0245 (10)0.0017 (10)0.0011 (8)−0.0052 (9)
N1A0.0165 (11)0.0191 (14)0.0188 (11)−0.0005 (11)0.0029 (9)−0.0013 (11)
N2A0.0174 (11)0.0217 (14)0.0127 (10)−0.0015 (11)0.0009 (8)−0.0007 (10)
C1A0.0142 (12)0.0186 (16)0.0252 (13)−0.0005 (13)0.0045 (10)−0.0012 (13)
C2A0.0185 (13)0.0193 (17)0.0300 (15)0.0043 (14)0.0035 (11)0.0063 (14)
C3A0.0144 (13)0.0275 (18)0.0237 (14)0.0009 (14)−0.0012 (11)0.0089 (14)
C4A0.0145 (12)0.0216 (17)0.0214 (13)−0.0013 (13)0.0008 (10)0.0007 (13)
C5A0.0180 (13)0.0146 (15)0.0220 (13)0.0005 (13)0.0029 (10)0.0031 (13)
C6A0.0121 (11)0.0176 (16)0.0211 (13)−0.0019 (13)0.0035 (10)0.0030 (13)
C7A0.0140 (12)0.0183 (16)0.0203 (13)0.0016 (13)0.0056 (10)0.0021 (13)
C8A0.0153 (12)0.0192 (16)0.0193 (12)0.0027 (13)0.0024 (10)−0.0013 (13)
C9A0.0141 (12)0.0174 (16)0.0175 (12)0.0002 (13)0.0046 (10)−0.0020 (12)
C10A0.0156 (13)0.0249 (18)0.0214 (13)−0.0032 (13)0.0039 (10)0.0011 (13)
C11A0.0218 (13)0.0151 (16)0.0129 (12)−0.0022 (13)0.0045 (10)0.0000 (12)
C12A0.0204 (13)0.0134 (15)0.0097 (11)−0.0026 (13)0.0011 (9)0.0015 (11)
C13A0.0208 (13)0.0128 (15)0.0158 (12)0.0005 (13)0.0022 (10)0.0007 (12)
C14A0.0186 (13)0.0210 (17)0.0158 (12)0.0072 (14)0.0023 (10)0.0048 (13)
C15A0.0177 (13)0.0241 (17)0.0134 (12)−0.0055 (14)−0.0012 (10)−0.0001 (12)
C16A0.0264 (14)0.0143 (15)0.0143 (12)−0.0021 (14)0.0024 (10)0.0005 (12)
C17A0.0196 (13)0.0176 (16)0.0104 (11)0.0017 (13)0.0031 (9)0.0027 (12)
C18A0.0191 (13)0.0257 (18)0.0252 (14)−0.0034 (14)0.0022 (11)0.0003 (14)
C19A0.0221 (14)0.0248 (18)0.0241 (14)0.0006 (15)0.0043 (11)−0.0056 (14)
Cl1B0.0253 (3)0.0287 (4)0.0162 (3)0.0025 (4)0.0053 (2)0.0007 (3)
Cl2B0.0172 (3)0.0252 (4)0.0255 (3)0.0033 (3)−0.0020 (2)0.0031 (3)
O1B0.0327 (12)0.0183 (12)0.0210 (10)0.0053 (11)0.0030 (9)−0.0026 (10)
O2B0.0213 (10)0.0169 (12)0.0247 (10)0.0035 (10)−0.0001 (8)−0.0025 (9)
N1B0.0176 (11)0.0182 (14)0.0192 (11)−0.0006 (11)0.0033 (9)0.0011 (11)
N2B0.0188 (11)0.0189 (14)0.0150 (10)−0.0013 (11)0.0001 (8)0.0029 (10)
C1B0.0132 (12)0.0186 (16)0.0210 (13)0.0005 (13)0.0043 (10)−0.0004 (13)
C2B0.0161 (13)0.0148 (16)0.0291 (14)0.0034 (13)0.0057 (11)0.0010 (13)
C3B0.0134 (12)0.0211 (17)0.0226 (13)0.0030 (13)0.0029 (10)0.0079 (13)
C4B0.0153 (12)0.0223 (17)0.0158 (12)−0.0022 (13)0.0065 (10)0.0001 (12)
C5B0.0144 (12)0.0156 (15)0.0207 (12)0.0008 (12)0.0061 (10)0.0001 (12)
C6B0.0127 (12)0.0157 (15)0.0202 (12)−0.0008 (13)0.0043 (10)0.0018 (12)
C7B0.0129 (12)0.0147 (15)0.0231 (13)0.0001 (12)0.0052 (10)0.0006 (12)
C8B0.0141 (12)0.0217 (17)0.0181 (12)0.0024 (13)0.0017 (10)0.0035 (13)
C9B0.0134 (12)0.0156 (15)0.0170 (12)0.0005 (12)0.0014 (10)−0.0013 (12)
C10B0.0174 (13)0.0181 (16)0.0186 (12)−0.0015 (13)0.0019 (10)0.0010 (12)
C11B0.0224 (14)0.0159 (15)0.0123 (11)−0.0023 (13)0.0034 (10)0.0009 (12)
C12B0.0182 (13)0.0171 (15)0.0117 (11)−0.0002 (13)0.0047 (10)0.0011 (12)
C13B0.0193 (13)0.0150 (15)0.0162 (12)0.0008 (13)0.0049 (10)0.0025 (12)
C14B0.0163 (12)0.0187 (16)0.0142 (12)0.0037 (13)0.0039 (10)0.0049 (12)
C15B0.0170 (13)0.0253 (17)0.0116 (12)−0.0068 (13)0.0034 (10)−0.0016 (12)
C16B0.0239 (14)0.0157 (16)0.0165 (12)−0.0027 (14)0.0065 (10)−0.0013 (12)
C17B0.0204 (13)0.0185 (16)0.0125 (11)0.0021 (13)0.0065 (10)0.0011 (12)
C18B0.0159 (13)0.0211 (17)0.0220 (13)−0.0005 (13)0.0012 (10)−0.0019 (13)
C19B0.0224 (14)0.0194 (17)0.0205 (13)0.0013 (14)0.0012 (11)−0.0017 (13)

Geometric parameters (Å, °)

Cl1A—C4A1.747 (3)Cl1B—C4B1.749 (3)
Cl2A—C14A1.747 (3)Cl2B—C14B1.750 (3)
O1A—C1A1.352 (3)O1B—C1B1.350 (3)
O1A—H1OA0.92 (4)O1B—H1OB0.84 (4)
O2A—C17A1.352 (3)O2B—C17B1.348 (3)
O2A—H2OA0.86 (4)O2B—H2OB0.82 (4)
N1A—C7A1.280 (3)N1B—C7B1.277 (3)
N1A—C8A1.459 (3)N1B—C8B1.454 (3)
N2A—C11A1.274 (3)N2B—C11B1.278 (3)
N2A—C10A1.464 (3)N2B—C10B1.457 (3)
C1A—C2A1.400 (4)C1B—C2B1.396 (4)
C1A—C6A1.410 (4)C1B—C6B1.408 (4)
C2A—C3A1.375 (4)C2B—C3B1.376 (4)
C2A—H2AA0.9500C2B—H2BA0.9500
C3A—C4A1.385 (4)C3B—C4B1.388 (4)
C3A—H3AA0.9500C3B—H3BA0.9500
C4A—C5A1.382 (3)C4B—C5B1.376 (4)
C5A—C6A1.398 (4)C5B—C6B1.401 (3)
C5A—H5AA0.9500C5B—H5BA0.9500
C6A—C7A1.464 (3)C6B—C7B1.461 (4)
C7A—H7AA0.9500C7B—H7BA0.9500
C8A—C9A1.542 (3)C8B—C9B1.543 (3)
C8A—H8AA0.9900C8B—H8BA0.9900
C8A—H8AB0.9900C8B—H8BB0.9900
C9A—C18A1.529 (4)C9B—C19B1.531 (4)
C9A—C19A1.529 (4)C9B—C18B1.534 (3)
C9A—C10A1.539 (3)C9B—C10B1.535 (4)
C10A—H10A0.9900C10B—H10C0.9900
C10A—H10B0.9900C10B—H10D0.9900
C11A—C12A1.464 (3)C11B—C12B1.464 (3)
C11A—H11A0.9500C11B—H11B0.9500
C12A—C13A1.398 (4)C12B—C13B1.394 (4)
C12A—C17A1.405 (4)C12B—C17B1.408 (4)
C13A—C14A1.373 (4)C13B—C14B1.382 (3)
C13A—H13A0.9500C13B—H13B0.9500
C14A—C15A1.390 (4)C14B—C15B1.383 (4)
C15A—C16A1.376 (4)C15B—C16B1.376 (4)
C15A—H15A0.9500C15B—H15B0.9500
C16A—C17A1.395 (4)C16B—C17B1.396 (4)
C16A—H16A0.9500C16B—H16B0.9500
C18A—H18A0.9800C18B—H18D0.9800
C18A—H18B0.9800C18B—H18E0.9800
C18A—H18C0.9800C18B—H18F0.9800
C19A—H19A0.9800C19B—H19D0.9800
C19A—H19B0.9800C19B—H19E0.9800
C19A—H19C0.9800C19B—H19F0.9800
C1A—O1A—H1OA107 (2)C1B—O1B—H1OB105 (2)
C17A—O2A—H2OA108 (2)C17B—O2B—H2OB107 (3)
C7A—N1A—C8A119.4 (2)C7B—N1B—C8B119.6 (3)
C11A—N2A—C10A118.0 (2)C11B—N2B—C10B118.8 (2)
O1A—C1A—C2A118.6 (3)O1B—C1B—C2B118.5 (3)
O1A—C1A—C6A121.9 (2)O1B—C1B—C6B121.8 (2)
C2A—C1A—C6A119.5 (3)C2B—C1B—C6B119.7 (2)
C3A—C2A—C1A120.1 (3)C3B—C2B—C1B120.4 (3)
C3A—C2A—H2AA119.9C3B—C2B—H2BA119.8
C1A—C2A—H2AA119.9C1B—C2B—H2BA119.8
C2A—C3A—C4A120.4 (2)C2B—C3B—C4B119.8 (3)
C2A—C3A—H3AA119.8C2B—C3B—H3BA120.1
C4A—C3A—H3AA119.8C4B—C3B—H3BA120.1
C5A—C4A—C3A120.8 (3)C5B—C4B—C3B121.1 (2)
C5A—C4A—Cl1A120.0 (2)C5B—C4B—Cl1B119.6 (2)
C3A—C4A—Cl1A119.2 (2)C3B—C4B—Cl1B119.4 (2)
C4A—C5A—C6A119.7 (3)C4B—C5B—C6B120.0 (3)
C4A—C5A—H5AA120.1C4B—C5B—H5BA120.0
C6A—C5A—H5AA120.1C6B—C5B—H5BA120.0
C5A—C6A—C1A119.5 (2)C5B—C6B—C1B119.1 (2)
C5A—C6A—C7A119.6 (3)C5B—C6B—C7B120.1 (3)
C1A—C6A—C7A120.9 (3)C1B—C6B—C7B120.8 (2)
N1A—C7A—C6A121.1 (3)N1B—C7B—C6B120.8 (3)
N1A—C7A—H7AA119.4N1B—C7B—H7BA119.6
C6A—C7A—H7AA119.4C6B—C7B—H7BA119.6
N1A—C8A—C9A111.3 (2)N1B—C8B—C9B111.1 (2)
N1A—C8A—H8AA109.4N1B—C8B—H8BA109.4
C9A—C8A—H8AA109.4C9B—C8B—H8BA109.4
N1A—C8A—H8AB109.4N1B—C8B—H8BB109.4
C9A—C8A—H8AB109.4C9B—C8B—H8BB109.4
H8AA—C8A—H8AB108.0H8BA—C8B—H8BB108.0
C18A—C9A—C19A110.0 (2)C19B—C9B—C18B110.4 (2)
C18A—C9A—C10A107.5 (2)C19B—C9B—C10B110.3 (2)
C19A—C9A—C10A110.7 (2)C18B—C9B—C10B108.1 (2)
C18A—C9A—C8A109.9 (2)C19B—C9B—C8B110.6 (2)
C19A—C9A—C8A110.8 (2)C18B—C9B—C8B109.8 (2)
C10A—C9A—C8A107.9 (2)C10B—C9B—C8B107.7 (2)
N2A—C10A—C9A113.4 (2)N2B—C10B—C9B112.2 (2)
N2A—C10A—H10A108.9N2B—C10B—H10C109.2
C9A—C10A—H10A108.9C9B—C10B—H10C109.2
N2A—C10A—H10B108.9N2B—C10B—H10D109.2
C9A—C10A—H10B108.9C9B—C10B—H10D109.2
H10A—C10A—H10B107.7H10C—C10B—H10D107.9
N2A—C11A—C12A121.2 (3)N2B—C11B—C12B120.7 (3)
N2A—C11A—H11A119.4N2B—C11B—H11B119.7
C12A—C11A—H11A119.4C12B—C11B—H11B119.7
C13A—C12A—C17A119.1 (2)C13B—C12B—C17B119.4 (2)
C13A—C12A—C11A119.9 (3)C13B—C12B—C11B119.4 (3)
C17A—C12A—C11A121.0 (2)C17B—C12B—C11B121.2 (2)
C14A—C13A—C12A120.3 (3)C14B—C13B—C12B120.0 (3)
C14A—C13A—H13A119.8C14B—C13B—H13B120.0
C12A—C13A—H13A119.8C12B—C13B—H13B120.0
C13A—C14A—C15A120.6 (3)C13B—C14B—C15B120.7 (3)
C13A—C14A—Cl2A120.1 (2)C13B—C14B—Cl2B119.9 (2)
C15A—C14A—Cl2A119.2 (2)C15B—C14B—Cl2B119.3 (2)
C16A—C15A—C14A119.8 (2)C16B—C15B—C14B120.0 (2)
C16A—C15A—H15A120.1C16B—C15B—H15B120.0
C14A—C15A—H15A120.1C14B—C15B—H15B120.0
C15A—C16A—C17A120.6 (3)C15B—C16B—C17B120.6 (3)
C15A—C16A—H16A119.7C15B—C16B—H16B119.7
C17A—C16A—H16A119.7C17B—C16B—H16B119.7
O2A—C17A—C16A118.9 (3)O2B—C17B—C16B118.6 (3)
O2A—C17A—C12A121.6 (2)O2B—C17B—C12B122.1 (2)
C16A—C17A—C12A119.5 (3)C16B—C17B—C12B119.3 (3)
C9A—C18A—H18A109.5C9B—C18B—H18D109.5
C9A—C18A—H18B109.5C9B—C18B—H18E109.5
H18A—C18A—H18B109.5H18D—C18B—H18E109.5
C9A—C18A—H18C109.5C9B—C18B—H18F109.5
H18A—C18A—H18C109.5H18D—C18B—H18F109.5
H18B—C18A—H18C109.5H18E—C18B—H18F109.5
C9A—C19A—H19A109.5C9B—C19B—H19D109.5
C9A—C19A—H19B109.5C9B—C19B—H19E109.5
H19A—C19A—H19B109.5H19D—C19B—H19E109.5
C9A—C19A—H19C109.5C9B—C19B—H19F109.5
H19A—C19A—H19C109.5H19D—C19B—H19F109.5
H19B—C19A—H19C109.5H19E—C19B—H19F109.5
O1A—C1A—C2A—C3A−177.3 (3)O1B—C1B—C2B—C3B−178.6 (2)
C6A—C1A—C2A—C3A2.1 (4)C6B—C1B—C2B—C3B1.4 (4)
C1A—C2A—C3A—C4A−1.1 (4)C1B—C2B—C3B—C4B0.1 (4)
C2A—C3A—C4A—C5A−0.6 (4)C2B—C3B—C4B—C5B−1.1 (4)
C2A—C3A—C4A—Cl1A178.7 (2)C2B—C3B—C4B—Cl1B179.4 (2)
C3A—C4A—C5A—C6A1.2 (4)C3B—C4B—C5B—C6B0.7 (4)
Cl1A—C4A—C5A—C6A−178.0 (2)Cl1B—C4B—C5B—C6B−179.81 (19)
C4A—C5A—C6A—C1A−0.2 (4)C4B—C5B—C6B—C1B0.8 (4)
C4A—C5A—C6A—C7A179.9 (2)C4B—C5B—C6B—C7B−177.5 (2)
O1A—C1A—C6A—C5A177.9 (2)O1B—C1B—C6B—C5B178.2 (2)
C2A—C1A—C6A—C5A−1.5 (4)C2B—C1B—C6B—C5B−1.8 (4)
O1A—C1A—C6A—C7A−2.1 (4)O1B—C1B—C6B—C7B−3.5 (4)
C2A—C1A—C6A—C7A178.5 (2)C2B—C1B—C6B—C7B176.5 (2)
C8A—N1A—C7A—C6A−179.6 (2)C8B—N1B—C7B—C6B−176.9 (2)
C5A—C6A—C7A—N1A−175.0 (2)C5B—C6B—C7B—N1B−177.9 (2)
C1A—C6A—C7A—N1A5.0 (4)C1B—C6B—C7B—N1B3.8 (4)
C7A—N1A—C8A—C9A126.1 (3)C7B—N1B—C8B—C9B122.3 (3)
N1A—C8A—C9A—C18A−63.0 (3)N1B—C8B—C9B—C19B57.4 (3)
N1A—C8A—C9A—C19A58.7 (3)N1B—C8B—C9B—C18B−64.6 (3)
N1A—C8A—C9A—C10A−180.0 (2)N1B—C8B—C9B—C10B177.9 (2)
C11A—N2A—C10A—C9A120.4 (3)C11B—N2B—C10B—C9B135.0 (2)
C18A—C9A—C10A—N2A178.7 (2)C19B—C9B—C10B—N2B57.0 (3)
C19A—C9A—C10A—N2A58.7 (3)C18B—C9B—C10B—N2B177.7 (2)
C8A—C9A—C10A—N2A−62.8 (3)C8B—C9B—C10B—N2B−63.7 (3)
C10A—N2A—C11A—C12A178.3 (2)C10B—N2B—C11B—C12B177.0 (2)
N2A—C11A—C12A—C13A174.1 (2)N2B—C11B—C12B—C13B−178.2 (2)
N2A—C11A—C12A—C17A−7.7 (4)N2B—C11B—C12B—C17B−0.5 (4)
C17A—C12A—C13A—C14A−1.0 (4)C17B—C12B—C13B—C14B−2.6 (4)
C11A—C12A—C13A—C14A177.2 (2)C11B—C12B—C13B—C14B175.1 (2)
C12A—C13A—C14A—C15A−0.5 (4)C12B—C13B—C14B—C15B0.3 (4)
C12A—C13A—C14A—Cl2A178.79 (19)C12B—C13B—C14B—Cl2B−178.03 (19)
C13A—C14A—C15A—C16A0.6 (4)C13B—C14B—C15B—C16B1.9 (4)
Cl2A—C14A—C15A—C16A−178.70 (19)Cl2B—C14B—C15B—C16B−179.76 (19)
C14A—C15A—C16A—C17A0.8 (4)C14B—C15B—C16B—C17B−1.7 (4)
C15A—C16A—C17A—O2A178.7 (2)C15B—C16B—C17B—O2B−179.9 (2)
C15A—C16A—C17A—C12A−2.3 (4)C15B—C16B—C17B—C12B−0.6 (4)
C13A—C12A—C17A—O2A−178.6 (2)C13B—C12B—C17B—O2B−178.0 (2)
C11A—C12A—C17A—O2A3.1 (4)C11B—C12B—C17B—O2B4.4 (4)
C13A—C12A—C17A—C16A2.4 (4)C13B—C12B—C17B—C16B2.7 (4)
C11A—C12A—C17A—C16A−175.8 (2)C11B—C12B—C17B—C16B−174.9 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1A—H1OA···N1A0.92 (4)1.76 (4)2.594 (3)150 (4)
O2A—H2OA···N2A0.86 (4)1.82 (4)2.591 (3)148 (3)
O1B—H1OB···N1B0.84 (4)1.80 (4)2.579 (3)153 (3)
O2B—H2OB···N2B0.82 (4)1.85 (4)2.595 (3)151 (4)
C16A—H16A···O2Ai0.952.543.291 (3)136
C18A—H18C···Cg10.982.733.634 (3)153

Symmetry codes: (i) −x, −y−1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2362).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bomfim, J. A. S., Wardell, J. L., Low, J. N., Skakle, J. M. S. & Glidewell, C. (2005). Acta Cryst. C61, o53–o56. [PubMed]
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Calligaris, M. & Randaccio, L. (1987). Comprehensive Coordination Chemistry, Vol. 2, edited by G. Wilkinson, pp. 715–738. London: Pergamon.
  • Casellato, U. & Vigato, P. A. (1977). Coord. Chem. Rev.23, 31–50.
  • Fun, H.-K., Kia, R. & Kargar, H. (2008). Acta Cryst. E64, o1895–o1896. [PMC free article] [PubMed]
  • Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. E61, o3551–o3553.
  • Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2006). Acta Cryst. C62, o1–o4. [PubMed]
  • Li, Y.-G., Zhu, H.-L., Chen, X.-Z. & Song, Y. (2005). Acta Cryst. E61, o4156–o4157.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Sun, Y.-X., You, Z.-L. & Zhu, H.-L. (2004). Acta Cryst. E60, o1707–o1708.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography