PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 January 1; 65(Pt 1): o65.
Published online 2008 December 10. doi:  10.1107/S1600536808035885
PMCID: PMC2967977

N-[4-(Prop-2-yn­yloxy)phen­yl]maleimide

Abstract

In the title compound, C13H9NO3, the dihedral angle between the benzene and maleimide rings is 64.1 (2)°. In the crystal structure, mol­ecules interact via C—H(...)O inter­actions.

Related literature

N-substituted maleimides can be used in free-radical-initiated polymerization processes upon exposure to light, see: Chang et al. (1999 [triangle]); Hoyle et al. (1999 [triangle]). For related structures, see: Moreno-Fuquen et al. (2006 [triangle], 2008a [triangle],b [triangle]). For the effect of benzene ring substituents on the dihedral angle between the benzene and imidic rings, see: Miller et al. (2000 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-00o65-scheme1.jpg

Experimental

Crystal data

  • C13H9NO3
  • M r = 227.21
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-00o65-efi1.jpg
  • a = 9.0428 (18) Å
  • b = 11.491 (2) Å
  • c = 11.492 (2) Å
  • β = 102.00 (3)°
  • V = 1168.0 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 292 (3) K
  • 0.30 × 0.26 × 0.20 mm

Data collection

  • Bruker SMART 1K CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.968, T max = 0.981
  • 6107 measured reflections
  • 2053 independent reflections
  • 1368 reflections with I > 2σ(I)
  • R int = 0.088

Refinement

  • R[F 2 > 2σ(F 2)] = 0.072
  • wR(F 2) = 0.224
  • S = 1.35
  • 2053 reflections
  • 154 parameters
  • H-atom parameters constrained
  • Δρmax = 0.48 e Å−3
  • Δρmin = −0.43 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808035885/hg2436sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808035885/hg2436Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Natural Science Foundation of China (No. 50873093).

supplementary crystallographic information

Comment

N-substituted maleimides can be used in free radical initiated polymerization process upon exposure to light (Chang, et al., 1999; Hoyle, et al.,1999). N-(3-Nitrophenyl)maleimide (Moreno-Fuquen, et al., 2006), N-(3-Chlorophenyl)maleimide (Moreno-Fuquen, et al., 2008a) and N-(4-Chlorophenyl)maleimide (Moreno-Fuquen, et al., 2008b) has reported and could be taken as a reference to compare with the structural characteristics of (I).

Perspective view of (I), showing the atomic numbering scheme, can be seen in Fig. 1. The dihedral angle between the benzene and imidic rings influences on the polymerization process, and subsituents of the benzene ring can effect the value of dihedral angle (Miller et al. 2000). In the title compound (I), the dihedral angle between the benzene and maleimide is 64.1 (2)°. This angle is 46.46 (5) ° for N-(3-Chlorophenyl)maleimide (Moreno-Fuquen, et al., 2008:1) and 47.54 (9) ° for N-(4-Chlorophenyl)maleimide (Moreno-Fuquen, et al., 2008:2). The crystal structure of (I) is stabilized by weak intermolecular C—H···O hydrogen bonds.

Experimental

The title compound was prepared by taking equimolar quantities of 4-(prop-2-ynyloxy)benzenamine (14.7 g, 0.1 mol) and maleic anhydride (9.8 g, 0.1 mol) in 80 ml benzene and 20 ml DMF and refluxing 4 h in the presence of p-toluenesulfonic acid. The reaction product was poured into 500 ml ice water, yellow precipitate product was formed. The crude product was recrystalled from ethanol. Yield 90%. 1H NMR (300 MHz, DMSO-d6) δ 7.30, 7.13(d, aromatic), 7.02(s, 2H, maleimide), 4.85(s, 2H, –H2–), 3.14(s, 1H, [equivalent]-H). Analysis. calculated for C13H9NO3: C 68.72, H 3.99, N 6.16%. Found: C 68.39, H 4.02, N 6.21%. The product added in 50 ml ethanol and crystals of (I) suitable for X-ray analysis were obtained by slow evaporation at room temperature.

Refinement

The H atoms bound to C atoms were placed in caculated positions with C—H = 0.93 Å and included in the refinement with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
A view of complex (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Crystal data

C13H9NO3F(000) = 472
Mr = 227.21Dx = 1.292 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2053 reflections
a = 9.0428 (18) Åθ = 2.5–25.0°
b = 11.491 (2) ŵ = 0.09 mm1
c = 11.492 (2) ÅT = 292 K
β = 102.00 (3)°Block, yellow
V = 1168.0 (4) Å30.30 × 0.26 × 0.20 mm
Z = 4

Data collection

Bruker SMART 1K CCD area-detector diffractometer2053 independent reflections
Radiation source: fine-focus sealed tube1368 reflections with I > 2σ(I)
graphiteRint = 0.088
phi and ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Bruker, 2000)h = −10→10
Tmin = 0.968, Tmax = 0.981k = −13→10
6107 measured reflectionsl = −12→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.072Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.224H-atom parameters constrained
S = 1.35w = 1/[σ2(Fo2) + (0.0733P)2 + 3.1182P] where P = (Fo2 + 2Fc2)/3
2053 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = −0.43 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C30.2361 (11)0.5326 (8)0.6724 (8)0.088 (4)
H30.20390.53940.59040.106*
O30.0885 (6)0.1202 (5)1.2278 (5)0.0694 (19)
C50.1785 (7)0.3652 (6)0.9539 (6)0.052 (2)
O10.3695 (7)0.5806 (5)0.9313 (5)0.083 (2)
O20.0834 (8)0.3616 (6)0.7229 (6)0.094 (3)
C80.1352 (8)0.1986 (7)1.1335 (6)0.048 (2)
C90.2725 (8)0.2328 (7)1.0900 (6)0.054 (2)
H90.35860.19601.13230.065*
C100.3076 (7)0.3112 (7)0.9958 (6)0.053 (2)
H100.39920.32000.97200.064*
C70.0089 (9)0.2487 (8)1.0914 (8)0.066 (3)
H7−0.08340.23631.11290.079*
C60.0429 (7)0.3326 (7)0.9989 (7)0.059 (2)
H6−0.04240.37360.96130.071*
C10.3150 (9)0.5431 (8)0.8502 (7)0.062 (3)
C40.1745 (10)0.4410 (7)0.7421 (7)0.070 (3)
C110.2080 (11)0.0481 (9)1.2619 (8)0.077 (3)
H11A0.18620.00161.32680.093*
H11B0.29350.09711.29580.093*
C20.3280 (11)0.5958 (8)0.7276 (8)0.078 (3)
H20.38660.65530.70590.094*
C120.2667 (12)−0.0409 (10)1.1735 (10)0.081 (3)
C130.3170 (15)−0.1138 (12)1.1030 (12)0.113 (5)
H130.3526−0.16561.05300.136*
N10.2168 (7)0.4475 (6)0.8557 (5)0.0543 (19)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C30.115 (8)0.070 (6)0.055 (6)0.005 (6)−0.038 (6)0.016 (5)
O30.068 (4)0.078 (4)0.052 (3)0.000 (3)−0.010 (3)0.011 (3)
C50.053 (4)0.053 (5)0.038 (4)−0.006 (4)−0.017 (4)−0.001 (4)
O10.093 (5)0.077 (4)0.058 (4)−0.021 (4)−0.038 (4)−0.001 (3)
O20.107 (5)0.068 (4)0.074 (4)−0.006 (4)−0.056 (4)0.003 (3)
C80.064 (5)0.049 (5)0.026 (4)−0.009 (4)−0.003 (4)0.009 (3)
C90.059 (5)0.054 (5)0.039 (4)−0.021 (4)−0.010 (4)0.016 (4)
C100.039 (4)0.068 (5)0.045 (5)−0.006 (4)−0.007 (4)−0.009 (4)
C70.045 (5)0.075 (6)0.069 (6)−0.013 (4)−0.006 (4)0.001 (5)
C60.057 (5)0.051 (5)0.058 (5)−0.002 (4)−0.014 (4)0.007 (4)
C10.057 (5)0.069 (6)0.047 (5)0.002 (4)−0.018 (4)−0.003 (5)
C40.082 (6)0.052 (5)0.054 (5)0.013 (5)−0.034 (5)−0.002 (4)
C110.082 (6)0.096 (8)0.042 (5)−0.010 (6)−0.012 (5)0.036 (5)
C20.088 (7)0.058 (6)0.072 (6)−0.011 (5)−0.020 (5)0.016 (5)
C120.085 (7)0.083 (8)0.068 (7)0.019 (6)0.000 (6)0.028 (6)
C130.134 (11)0.098 (9)0.092 (9)0.023 (9)−0.014 (8)0.019 (8)
N10.051 (4)0.064 (4)0.036 (4)0.004 (3)−0.018 (3)0.000 (3)

Geometric parameters (Å, °)

C3—C21.184 (11)C10—H100.9300
C3—C41.498 (9)C7—C61.513 (11)
C3—H30.9300C7—H70.9300
O3—C111.353 (10)C6—H60.9300
O3—C81.535 (9)C1—N11.422 (11)
C5—C101.321 (7)C1—C21.560 (12)
C5—C61.475 (8)C4—N11.284 (10)
C5—N11.565 (10)C11—C121.608 (16)
O1—C11.052 (9)C11—H11A0.9700
O2—C41.218 (10)C11—H11B0.9700
C8—C71.281 (10)C2—H20.9300
C8—C91.484 (8)C12—C131.311 (16)
C9—C101.493 (10)C13—H130.9300
C9—H90.9300
C2—C3—C4116.3 (8)C7—C6—H6112.3
C2—C3—H3121.9O1—C1—N1117.3 (9)
C4—C3—H3121.9O1—C1—C2122.1 (9)
C11—O3—C8104.1 (6)N1—C1—C2120.4 (7)
C10—C5—C6119.3 (7)O2—C4—N1106.0 (8)
C10—C5—N1103.6 (6)O2—C4—C3137.9 (8)
C6—C5—N1136.9 (6)N1—C4—C3115.9 (8)
C7—C8—C9119.8 (7)O3—C11—C12123.7 (7)
C7—C8—O3100.1 (7)O3—C11—H11A106.4
C9—C8—O3139.9 (6)C12—C11—H11A106.4
C8—C9—C10136.3 (6)O3—C11—H11B106.4
C8—C9—H9111.9C12—C11—H11B106.4
C10—C9—H9111.9H11A—C11—H11B106.5
C5—C10—C9104.1 (6)C3—C2—C193.9 (8)
C5—C10—H10128.0C3—C2—H2133.0
C9—C10—H10128.0C1—C2—H2133.0
C8—C7—C6104.9 (7)C13—C12—C11178.9 (10)
C8—C7—H7127.6C12—C13—H13180.0
C6—C7—H7127.6C4—N1—C193.2 (7)
C5—C6—C7135.5 (6)C4—N1—C5129.4 (7)
C5—C6—H6112.3C1—N1—C5137.1 (5)
C11—O3—C8—C7169.0 (7)C4—C3—C2—C1−4.4 (12)
C11—O3—C8—C9−16.0 (12)O1—C1—C2—C3−172.0 (11)
C7—C8—C9—C10−5.8 (14)N1—C1—C2—C32.3 (12)
O3—C8—C9—C10179.9 (8)O2—C4—N1—C1−179.3 (7)
C6—C5—C10—C9−4.1 (9)C3—C4—N1—C1−3.7 (9)
N1—C5—C10—C9179.7 (5)O2—C4—N1—C56.4 (12)
C8—C9—C10—C56.6 (12)C3—C4—N1—C5−178.0 (7)
C9—C8—C7—C61.8 (10)O1—C1—N1—C4175.7 (9)
O3—C8—C7—C6178.1 (6)C2—C1—N1—C41.2 (10)
C10—C5—C6—C72.5 (14)O1—C1—N1—C5−10.7 (15)
N1—C5—C6—C7177.1 (8)C2—C1—N1—C5174.7 (8)
C8—C7—C6—C5−0.8 (13)C10—C5—N1—C4109.2 (9)
C2—C3—C4—O2−179.8 (12)C6—C5—N1—C4−65.9 (13)
C2—C3—C4—N16.5 (14)C10—C5—N1—C1−62.5 (11)
C8—O3—C11—C12−61.5 (10)C6—C5—N1—C1122.4 (10)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C2—H2···O2i0.932.503.179 (12)130
C9—H9···O2ii0.932.183.103 (10)169

Symmetry codes: (i) −x+1/2, y+1/2, −z+3/2; (ii) x+1/2, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2436).

References

  • Bruker (2000). SMART, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chang, J. Y., Kim, T. J., Han, M. J. & Chae, K. H. (1999). Polymer, 40, 4049–4054.
  • Hoyle, C. E., Viswanathan, K., Clark, S. C., Miller, C. W., Nguyen, C., Jonsson, S. & Shao, L. (1999). Macromolecules, 32, 2793–2795.
  • Miller, C. W., Hoyle, C. E., Valente, E. J., Zobkowski, J. D. & Jönsson, E. S. (2000). J. Chem. Crystallogr.30, 563–571.
  • Moreno-Fuquen, R., Pardo-Botero, Z. & Ellena, J. (2008a). Acta Cryst. E64, o932. [PMC free article] [PubMed]
  • Moreno-Fuquen, R., Pardo-Botero, Z. & Ellena, J. (2008b). Acta Cryst. E64, o1991. [PMC free article] [PubMed]
  • Moreno-Fuquen, R., Valencia, H., Pardo, Z. D., D’Vries, R. & Kennedy, A. R. (2006). Acta Cryst. E62, o2734–o2735.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography