PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 January 1; 65(Pt 1): o58.
Published online 2008 December 10. doi:  10.1107/S160053680804097X
PMCID: PMC2967972

N-[(Z)-(1-Methyl-1H-pyrrol-2-yl)methyl­idene]-1H-1,2,4-triazol-5-amine

Abstract

In the title compound, C8H9N5, a Schiff base derived from N-methyl­pyrrole-2-carbaldehyde and 3-amino-1,2,4-triazole, the C=N double bond linking the two aromatic rings has a Z conformation. The two rings are twisted by 24.20 (5)°. A chain motif results from N—H(...)N hydrogen bonding.

Related literature

For a related structure, see: Arfan et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-00o58-scheme1.jpg

Experimental

Crystal data

  • C8H9N5
  • M r = 175.20
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-00o58-efi1.jpg
  • a = 7.2519 (3) Å
  • b = 12.8616 (6) Å
  • c = 9.7445 (4) Å
  • β = 101.917 (2)°
  • V = 889.29 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 296 (2) K
  • 0.26 × 0.20 × 0.16 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.976, T max = 0.988
  • 10203 measured reflections
  • 2212 independent reflections
  • 1651 reflections with I > 2σ(I)
  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.107
  • S = 1.03
  • 2212 reflections
  • 136 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.16 e Å−3
  • Δρmin = −0.17 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680804097X/ng2523sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680804097X/ng2523Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the the Higher Education Commission, Islamabad, Pakistan, for funding the purchase of the diffractometer at GCU, Lahore.

supplementary crystallographic information

Comment

1,2,4-triazole ring is a basic aromatic ring and it possess various medicinal properties. The title compound (I), has been prepared to utilize it as an intermediate ligand and for complexation with various metals.

In the crystal structure of (I), (Fig 1), the pyrrole ring A(N1,C2—C5) is connected to the 1,2,4 triazole ring B(C7/N3/N4/C8/N5) through the Shiff bond C==N. There exist an intramolecular and an intermolecular H-bond (Fig 2), Table 1. The bond distances and bond angles of ring B are compareable as observed in the same moiety of 3-(2-Benzamidophenyl)-4-(4-hydroxyphenyl)- 5-methyl-4H-1,2,4-triazol-1-ium chloride (Arfan et al., 2008). Due to intermolecular H-bonding, the compound forms polymeric sheets. The dihedral angle between the rings A and B is 24.20 (5)°. The molecules are stabilized due to π-π interactions between the centroids CgA and CgB of rings A and B respectively. The centroid to centroid, CgA···CgBi [Symmetry code: i = 1 - x, 1 - y, 1 - z] and CgB···CgAii [Symmetry code: ii = - x, 1 - y, 1 - z] is 3.9008 (8) and 3.9009 (8) Å, respectively.

Experimental

N-methyl pyrrole-2-carboxyaldehyde (1.047 ml, 0.01 M) in methanol solution (10 ml) was added to magnetically stirred methanol solution (20 ml) of 3-amino 1,2,4 triazole (0.84 g m, 0.01 M) and mixture refluxed for 5 h through monitoring by TLC. After completion of the reaction, the resultant mixture was cooled to room temperature, filtered and reduced nearly half of its volume by rotary. It was then allowed to stay at room temperature for 2 days which resulted in the formation of a colorless solid product. It was filtered, washed with methanol and recrystallized with a mixture of ethanol:methanol (1:1).

Refinement

H-atoms were positioned geometrically, with C—H = 0.96 Å for methyl carbon and constrained to ride on their parent atom. The coordinates of all other H-atoms were refined. The Uiso(H) = xUeq(C, N), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figures

Fig. 1.
ORTEP-3 for Windows (Farrugia, 1997) drawing of the title compound, C8H9N5, with the atom numbering scheme. The thermal ellipsoids are drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radii. The intramolecular H-bonding ...
Fig. 2.
The partial unit cell packing of (I) (Spek, 2003) showing the interamolecular and intermolecular hydrogen bonding showing that polymeric sheets are formed.

Crystal data

C8H9N5F(000) = 368
Mr = 175.20Dx = 1.309 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1859 reflections
a = 7.2519 (3) Åθ = 2.7–28.3°
b = 12.8616 (6) ŵ = 0.09 mm1
c = 9.7445 (4) ÅT = 296 K
β = 101.917 (2)°Prismatic, orange
V = 889.29 (7) Å30.26 × 0.20 × 0.16 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer2212 independent reflections
Radiation source: fine-focus sealed tube1651 reflections with I > 2σ(I)
graphiteRint = 0.024
Detector resolution: 7.4 pixels mm-1θmax = 28.3°, θmin = 2.7°
ω scansh = −5→9
Absorption correction: multi-scan (SADABS; Bruker, 2005)k = −16→17
Tmin = 0.976, Tmax = 0.988l = −12→12
10203 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.03w = 1/[σ2(Fo2) + (0.0556P)2 + 0.079P] where P = (Fo2 + 2Fc2)/3
2212 reflections(Δ/σ)max = 0.001
136 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = −0.17 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.11672 (13)0.58683 (8)0.33358 (11)0.0543 (3)
N20.27287 (13)0.37308 (7)0.38528 (9)0.0459 (3)
N30.38353 (14)0.21080 (7)0.32861 (9)0.0475 (3)
N40.44733 (16)0.11865 (8)0.38789 (10)0.0552 (3)
N50.37569 (15)0.22874 (7)0.54902 (9)0.0494 (3)
C10.0572 (2)0.53330 (12)0.20067 (14)0.0754 (5)
C20.0834 (2)0.68853 (11)0.35562 (19)0.0691 (5)
C30.1530 (2)0.71296 (12)0.49152 (19)0.0719 (6)
C40.23118 (19)0.62366 (11)0.55771 (16)0.0609 (5)
C50.20967 (15)0.54493 (9)0.45902 (12)0.0471 (3)
C60.27772 (15)0.44120 (9)0.48170 (12)0.0451 (3)
C70.34307 (15)0.27546 (8)0.42465 (10)0.0415 (3)
C80.43865 (19)0.13408 (10)0.51969 (12)0.0545 (4)
H1A−0.032200.575560.138370.1132*
H1B−0.000320.468260.215990.1132*
H1C0.164700.520680.159760.1132*
H20.025 (2)0.7315 (13)0.2805 (17)0.0829*
H30.149 (2)0.7801 (13)0.5321 (17)0.0862*
H3N0.3769 (18)0.2235 (10)0.2359 (14)0.0571*
H40.294 (2)0.6150 (11)0.6550 (17)0.0730*
H60.3326 (17)0.4259 (9)0.5798 (14)0.0541*
H80.4755 (19)0.0815 (11)0.5904 (15)0.0655*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0532 (5)0.0502 (6)0.0587 (6)0.0034 (4)0.0099 (4)0.0071 (5)
N20.0558 (5)0.0467 (5)0.0355 (5)0.0026 (4)0.0102 (4)0.0039 (4)
N30.0696 (6)0.0446 (5)0.0290 (4)−0.0016 (4)0.0116 (4)−0.0003 (4)
N40.0813 (7)0.0435 (6)0.0415 (5)0.0025 (5)0.0143 (5)−0.0004 (4)
N50.0708 (6)0.0486 (5)0.0302 (4)0.0041 (4)0.0137 (4)0.0046 (4)
C10.0920 (10)0.0713 (10)0.0546 (8)0.0084 (8)−0.0044 (7)0.0100 (7)
C20.0635 (8)0.0525 (8)0.0924 (11)0.0090 (6)0.0187 (7)0.0113 (7)
C30.0720 (9)0.0503 (8)0.0983 (12)0.0023 (7)0.0292 (8)−0.0106 (8)
C40.0618 (8)0.0581 (8)0.0653 (8)−0.0038 (6)0.0189 (6)−0.0101 (6)
C50.0455 (5)0.0481 (6)0.0494 (6)−0.0023 (5)0.0135 (4)0.0009 (5)
C60.0499 (6)0.0485 (6)0.0373 (5)−0.0020 (5)0.0102 (4)0.0035 (5)
C70.0515 (6)0.0444 (6)0.0288 (5)−0.0021 (4)0.0090 (4)0.0009 (4)
C80.0782 (8)0.0466 (7)0.0388 (6)0.0043 (6)0.0120 (5)0.0068 (5)

Geometric parameters (Å, °)

N1—C11.4515 (17)C3—C41.380 (2)
N1—C21.3553 (18)C4—C51.3830 (19)
N1—C51.3779 (15)C5—C61.4238 (16)
N2—C61.2798 (14)C1—H1A0.9600
N2—C71.3792 (14)C1—H1B0.9600
N3—N41.3572 (14)C1—H1C0.9600
N3—C71.3293 (14)C2—H20.945 (16)
N4—C81.3139 (15)C3—H30.953 (17)
N5—C71.3294 (13)C4—H40.970 (16)
N5—C81.3514 (16)C6—H60.977 (13)
N3—H3N0.910 (13)C8—H80.963 (14)
C2—C31.353 (3)
N1···N22.9763 (14)C1···H3vii3.058 (16)
N2···N12.9763 (14)C6···H1B2.9600
N2···C12.9609 (17)C7···H2iv3.039 (16)
N3···N5i2.8225 (12)C7···H3Niii2.992 (13)
N3···N52.1725 (12)C8···H8ii3.083 (14)
N4···C8ii3.4283 (17)C8···H3Niii2.896 (13)
N4···N52.2532 (14)H1A···H22.4200
N5···N3iii2.8225 (12)H1B···N22.6100
N5···N42.2532 (14)H1B···C62.9600
N2···H1B2.6100H1C···N22.8900
N2···H1C2.8900H2···H1A2.4200
N3···H2iv2.946 (15)H2···N3viii2.946 (15)
N4···H8ii2.634 (14)H2···C7viii3.039 (16)
N5···H62.580 (12)H3···C1ix3.058 (16)
N5···H3Niii1.920 (13)H3N···N5i1.920 (13)
C1···N22.9609 (17)H3N···C7i2.992 (13)
C3···C7v3.5793 (19)H3N···C8i2.896 (13)
C3···C8v3.576 (2)H3N···H6i2.431 (18)
C4···C7v3.3206 (18)H4···H62.572 (19)
C5···C5vi3.4963 (16)H6···N52.580 (12)
C6···C6v3.5119 (16)H6···H42.572 (19)
C7···C3v3.5793 (19)H6···H3Niii2.431 (18)
C7···C4v3.3206 (18)H8···N4ii2.634 (14)
C8···C3v3.576 (2)H8···C8ii3.083 (14)
C8···N4ii3.4283 (17)
C1—N1—C2124.70 (12)N3—C7—N5109.60 (9)
C1—N1—C5127.37 (11)N4—C8—N5115.42 (11)
C2—N1—C5107.91 (11)N1—C1—H1A109.00
C6—N2—C7117.80 (9)N1—C1—H1B109.00
N4—N3—C7110.62 (8)N1—C1—H1C109.00
N3—N4—C8101.73 (10)H1A—C1—H1B109.00
C7—N5—C8102.63 (9)H1A—C1—H1C109.00
N4—N3—H3N121.5 (8)H1B—C1—H1C109.00
C7—N3—H3N127.8 (8)N1—C2—H2120.5 (10)
N1—C2—C3109.66 (14)C3—C2—H2129.7 (10)
C2—C3—C4107.35 (14)C2—C3—H3125.4 (10)
C3—C4—C5107.93 (13)C4—C3—H3127.2 (10)
N1—C5—C4107.15 (11)C3—C4—H4128.1 (9)
C4—C5—C6126.33 (11)C5—C4—H4124.0 (9)
N1—C5—C6126.48 (10)N2—C6—H6121.6 (7)
N2—C6—C5124.85 (11)C5—C6—H6113.5 (7)
N2—C7—N3119.75 (9)N4—C8—H8122.1 (9)
N2—C7—N5130.62 (9)N5—C8—H8122.5 (9)
C1—N1—C5—C4−177.86 (12)C7—N3—N4—C80.72 (13)
C1—N1—C2—C3178.37 (12)N3—N4—C8—N5−0.41 (15)
C5—N1—C2—C30.21 (16)C8—N5—C7—N30.52 (13)
C2—N1—C5—C6−177.44 (12)C8—N5—C7—N2178.36 (12)
C2—N1—C5—C40.23 (14)C7—N5—C8—N4−0.06 (15)
C1—N1—C5—C64.47 (19)N1—C2—C3—C4−0.57 (17)
C6—N2—C7—N518.65 (18)C2—C3—C4—C50.70 (17)
C6—N2—C7—N3−163.70 (11)C3—C4—C5—C6177.10 (12)
C7—N2—C6—C5−179.40 (11)C3—C4—C5—N1−0.57 (15)
N4—N3—C7—N5−0.82 (14)C4—C5—C6—N2−172.36 (12)
N4—N3—C7—N2−178.93 (10)N1—C5—C6—N24.88 (19)

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x+1, −y, −z+1; (iii) x, −y+1/2, z+1/2; (iv) −x, y−1/2, −z+1/2; (v) −x+1, −y+1, −z+1; (vi) −x, −y+1, −z+1; (vii) x, −y+3/2, z−1/2; (viii) −x, y+1/2, −z+1/2; (ix) x, −y+3/2, z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N3—H3n···N5i0.910 (13)1.920 (13)2.8225 (12)171.3 (12)
C1—H1B···N20.96002.61002.9609 (17)102.00

Symmetry codes: (i) x, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2523).

References

  • Arfan, M., Tahir, M. N., Khan, R. & Iqbal, M. S. (2008). Acta Cryst. E64, o1505. [PMC free article] [PubMed]
  • Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography