PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 January 1; 65(Pt 1): o55.
Published online 2008 December 10. doi:  10.1107/S160053680804066X
PMCID: PMC2967969

5-(1H-Imidazol-1-ylsulfon­yl)-N,N-dimethyl­naphthalen-1-amine

Abstract

In the title mol­ecule, C15H15N3O2S, the dihedral angle between the naphthalene ring system and the imidazole ring is 86.1 (2)°. In the crystal structure, weak inter­molecular C—H(...)O and C—H(...)N hydrogen bonds, as well as weak C—H(...)π inter­actions, connect mol­ecules, forming a two-dimensional network.

Related literature

For background information, see: Corradini et al. (1997 [triangle]); Kavallieratos et al. (2005 [triangle]); Koike et al. (1996 [triangle]). For the synthesis, see: Hilderbrand et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-00o55-scheme1.jpg

Experimental

Crystal data

  • C15H15N3O2S
  • M r = 301.36
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-00o55-efi1.jpg
  • a = 16.3707 (16) Å
  • b = 7.7928 (7) Å
  • c = 22.088 (2) Å
  • V = 2817.8 (5) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.24 mm−1
  • T = 150 (2) K
  • 0.20 × 0.10 × 0.10 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.944, T max = 0.977
  • 9800 measured reflections
  • 2577 independent reflections
  • 2196 reflections with I > 2σ(I)
  • R int = 0.058

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.110
  • S = 1.07
  • 2577 reflections
  • 192 parameters
  • H-atom parameters constrained
  • Δρmax = 0.50 e Å−3
  • Δρmin = −0.31 e Å−3

Data collection: SMART (Bruker, 2007 [triangle]); cell refinement: SAINT-Plus (Bruker, 2007 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680804066X/lh2737sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680804066X/lh2737Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Dansyl chloride is widely used as a fluorescent label in immunofluorescence methods and in yielding fluorescent N-terminal amino acids and peptide derivatives. Some dansyl chloride derivatives are also used as fluorescent probes, which can detect trace metal ions such as Pb2+, Cu2+, Zn2+ (Koike et al., 1996; Corradini et al., 1997; Kavallieratos et al., 2005). We are interested in preparing fluorescent drug or ligand analogs that are expected to bind to hydrophobic sites in proteins or membranes. With this mind, the title compound, (I), was prepared and we report the crystal stucture herein.

In the molecular structure (Fig. 1), the dihedral angle between the naphthalene ring and the imidazole ring is 86.1 (2)°. All bond lengths and bond angles are as expected. In the crystal structure (Fig.2), the molecules are linked by C–H···O and C—H···N hydrogen bonds (Table 1) and C—H···π interactions into a two-dimension network.

Experimental

Compound (I) was synthesized according to a literature procedure (Hilderbrand et al., 2004). Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethyl acetate solution of (I) at room temperature.

Refinement

All H atoms were placed in idealized positions [CH(methyl)=0.98 Å and C—H(aromatic) =0.95 Å] and included in the refinement in the riding-model approximation, with Uiso(Hmethyl)= 1.5Ueq(C) and Uiso(Haromatic) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of (I), with displacement ellipsoids drawn at the 50% probability level.
Fig. 2.
Part of the crystal structure of (I) showing weak hydrogen bonds as dashed lines.

Crystal data

C15H15N3O2SF(000) = 1264
Mr = 301.36Dx = 1.421 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3852 reflections
a = 16.3707 (16) Åθ = 2.2–28.2°
b = 7.7928 (7) ŵ = 0.24 mm1
c = 22.088 (2) ÅT = 150 K
V = 2817.8 (5) Å3Block, red
Z = 80.20 × 0.10 × 0.10 mm

Data collection

Bruker SMART CCD diffractometer2577 independent reflections
Radiation source: fine-focus sealed tube2196 reflections with I > 2σ(I)
graphiteRint = 0.058
[var phi] and ω scansθmax = 25.5°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −12→19
Tmin = 0.944, Tmax = 0.977k = −7→9
9800 measured reflectionsl = −26→25

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.07w = 1/[σ2(Fo2) + (0.0583P)2 + 0.6727P] where P = (Fo2 + 2Fc2)/3
2577 reflections(Δ/σ)max < 0.001
192 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = −0.31 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.11008 (13)−0.0608 (3)0.10523 (10)0.0274 (5)
H1A0.1612−0.11470.09220.041*
H1B0.0721−0.05580.07100.041*
H1C0.0858−0.12850.13800.041*
C20.18098 (13)0.2027 (3)0.08508 (9)0.0319 (5)
H2A0.18770.32210.09810.048*
H2B0.15740.20020.04430.048*
H2C0.23430.14570.08460.048*
C30.14436 (11)0.1301 (3)0.18942 (8)0.0216 (4)
C40.21791 (12)0.1896 (3)0.21123 (9)0.0247 (5)
H40.26020.21840.18360.030*
C50.23134 (11)0.2084 (3)0.27371 (9)0.0255 (5)
H50.28250.25070.28740.031*
C60.17273 (11)0.1673 (3)0.31536 (9)0.0234 (4)
H60.18400.17730.35740.028*
C70.09481 (11)0.1098 (2)0.29548 (9)0.0193 (4)
C80.02739 (11)0.0735 (2)0.33507 (9)0.0193 (4)
C9−0.04868 (11)0.0311 (3)0.31351 (9)0.0214 (4)
H9−0.09170.00630.34100.026*
C10−0.06277 (11)0.0244 (3)0.25099 (9)0.0221 (4)
H10−0.1159−0.00070.23600.026*
C11−0.00036 (11)0.0539 (2)0.21174 (9)0.0207 (4)
H11−0.01070.04760.16950.025*
C120.08007 (11)0.0938 (2)0.23193 (9)0.0201 (4)
C130.06482 (12)−0.2592 (3)0.42799 (9)0.0235 (5)
H130.0112−0.29760.41870.028*
C140.13037 (12)−0.3564 (3)0.44095 (9)0.0280 (5)
H140.1302−0.47830.44200.034*
C150.17381 (12)−0.0973 (3)0.44626 (9)0.0238 (5)
H150.20770.00050.45140.029*
N10.12680 (9)0.1138 (2)0.12696 (7)0.0224 (4)
N20.09210 (9)−0.0906 (2)0.43108 (7)0.0189 (4)
N30.19833 (10)−0.2548 (2)0.45265 (8)0.0295 (4)
O1−0.04379 (8)0.04896 (19)0.43910 (6)0.0269 (4)
O20.08176 (8)0.22535 (18)0.43451 (6)0.0274 (4)
S10.03535 (3)0.08123 (6)0.41480 (2)0.02021 (17)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0290 (10)0.0248 (13)0.0283 (11)0.0020 (9)0.0010 (9)−0.0029 (9)
C20.0303 (11)0.0407 (14)0.0248 (10)−0.0036 (10)0.0055 (9)0.0055 (10)
C30.0222 (9)0.0177 (11)0.0251 (10)0.0019 (8)0.0009 (8)0.0024 (8)
C40.0194 (9)0.0245 (12)0.0302 (11)−0.0013 (8)0.0048 (8)0.0025 (9)
C50.0178 (9)0.0250 (12)0.0337 (11)−0.0014 (8)−0.0041 (8)−0.0010 (9)
C60.0226 (9)0.0224 (12)0.0251 (10)−0.0001 (8)−0.0045 (8)−0.0002 (8)
C70.0199 (9)0.0163 (11)0.0218 (10)0.0023 (8)−0.0009 (7)0.0015 (8)
C80.0220 (9)0.0158 (11)0.0201 (10)0.0016 (8)−0.0015 (7)0.0013 (8)
C90.0208 (9)0.0197 (11)0.0238 (10)−0.0010 (8)0.0026 (8)0.0008 (8)
C100.0181 (9)0.0211 (11)0.0270 (11)−0.0021 (8)−0.0042 (8)−0.0001 (9)
C110.0227 (10)0.0205 (12)0.0190 (9)0.0003 (8)−0.0044 (8)0.0015 (8)
C120.0192 (9)0.0164 (11)0.0247 (11)0.0015 (8)−0.0011 (8)0.0021 (8)
C130.0246 (10)0.0234 (12)0.0226 (10)−0.0060 (9)−0.0018 (8)−0.0014 (8)
C140.0337 (11)0.0187 (12)0.0316 (11)−0.0002 (9)−0.0014 (9)−0.0017 (9)
C150.0200 (9)0.0247 (12)0.0266 (11)−0.0024 (8)−0.0030 (8)0.0002 (8)
N10.0231 (8)0.0233 (10)0.0209 (9)−0.0022 (7)0.0025 (7)0.0018 (7)
N20.0207 (8)0.0179 (9)0.0182 (8)0.0004 (6)−0.0016 (6)−0.0003 (6)
N30.0247 (9)0.0259 (11)0.0377 (10)0.0024 (7)−0.0056 (7)0.0012 (8)
O10.0232 (7)0.0357 (9)0.0216 (7)0.0041 (6)0.0028 (5)−0.0006 (6)
O20.0325 (8)0.0221 (8)0.0276 (7)0.0006 (6)−0.0025 (6)−0.0041 (6)
S10.0221 (3)0.0203 (3)0.0183 (3)0.00270 (19)−0.00034 (18)−0.00119 (19)

Geometric parameters (Å, °)

C1—N11.468 (3)C8—C91.374 (3)
C1—H1A0.9800C8—S11.767 (2)
C1—H1B0.9800C9—C101.401 (3)
C1—H1C0.9800C9—H90.9500
C2—N11.457 (2)C10—C111.359 (3)
C2—H2A0.9800C10—H100.9500
C2—H2B0.9800C11—C121.424 (3)
C2—H2C0.9800C11—H110.9500
C3—C41.377 (3)C13—C141.344 (3)
C3—N11.415 (2)C13—N21.389 (3)
C3—C121.438 (3)C13—H130.9500
C4—C51.405 (3)C14—N31.390 (3)
C4—H40.9500C14—H140.9500
C5—C61.367 (3)C15—N31.299 (3)
C5—H50.9500C15—N21.380 (2)
C6—C71.422 (3)C15—H150.9500
C6—H60.9500N2—S11.6692 (16)
C7—C121.430 (3)O1—S11.4249 (14)
C7—C81.436 (3)O2—S11.4241 (14)
N1—C1—H1A109.5C10—C9—H9120.0
N1—C1—H1B109.5C11—C10—C9119.90 (17)
H1A—C1—H1B109.5C11—C10—H10120.0
N1—C1—H1C109.5C9—C10—H10120.0
H1A—C1—H1C109.5C10—C11—C12122.14 (18)
H1B—C1—H1C109.5C10—C11—H11118.9
N1—C2—H2A109.5C12—C11—H11118.9
N1—C2—H2B109.5C11—C12—C7118.84 (17)
H2A—C2—H2B109.5C11—C12—C3120.99 (17)
N1—C2—H2C109.5C7—C12—C3120.00 (16)
H2A—C2—H2C109.5C14—C13—N2105.42 (17)
H2B—C2—H2C109.5C14—C13—H13127.3
C4—C3—N1123.28 (17)N2—C13—H13127.3
C4—C3—C12118.54 (17)C13—C14—N3110.95 (19)
N1—C3—C12118.04 (16)C13—C14—H14124.5
C3—C4—C5121.01 (18)N3—C14—H14124.5
C3—C4—H4119.5N3—C15—N2111.22 (17)
C5—C4—H4119.5N3—C15—H15124.4
C6—C5—C4121.79 (18)N2—C15—H15124.4
C6—C5—H5119.1C3—N1—C2116.91 (16)
C4—C5—H5119.1C3—N1—C1116.09 (16)
C5—C6—C7119.71 (18)C2—N1—C1110.30 (16)
C5—C6—H6120.1C15—N2—C13106.73 (16)
C7—C6—H6120.1C15—N2—S1128.48 (14)
C6—C7—C12118.84 (17)C13—N2—S1124.69 (13)
C6—C7—C8124.31 (17)C15—N3—C14105.70 (17)
C12—C7—C8116.79 (16)O2—S1—O1120.60 (9)
C9—C8—C7122.21 (18)O2—S1—N2105.66 (8)
C9—C8—S1114.88 (14)O1—S1—N2106.46 (9)
C7—C8—S1122.91 (14)O2—S1—C8111.78 (9)
C8—C9—C10119.99 (17)O1—S1—C8107.60 (8)
C8—C9—H9120.0N2—S1—C8103.20 (8)
N1—C3—C4—C5178.02 (18)N2—C13—C14—N30.5 (2)
C12—C3—C4—C52.5 (3)C4—C3—N1—C2−15.4 (3)
C3—C4—C5—C60.5 (3)C12—C3—N1—C2160.21 (18)
C4—C5—C6—C7−2.3 (3)C4—C3—N1—C1117.6 (2)
C5—C6—C7—C120.9 (3)C12—C3—N1—C1−66.8 (2)
C5—C6—C7—C8−176.03 (19)N3—C15—N2—C130.0 (2)
C6—C7—C8—C9174.8 (2)N3—C15—N2—S1−176.46 (14)
C12—C7—C8—C9−2.2 (3)C14—C13—N2—C15−0.3 (2)
C6—C7—C8—S1−4.7 (3)C14—C13—N2—S1176.33 (14)
C12—C7—C8—S1178.26 (14)N2—C15—N3—C140.3 (2)
C7—C8—C9—C10−0.8 (3)C13—C14—N3—C15−0.5 (2)
S1—C8—C9—C10178.69 (15)C15—N2—S1—O2−14.58 (19)
C8—C9—C10—C112.4 (3)C13—N2—S1—O2169.57 (15)
C9—C10—C11—C12−0.7 (3)C15—N2—S1—O1−143.94 (17)
C10—C11—C12—C7−2.5 (3)C13—N2—S1—O140.22 (18)
C10—C11—C12—C3−177.88 (19)C15—N2—S1—C8102.91 (18)
C6—C7—C12—C11−173.40 (18)C13—N2—S1—C8−72.93 (17)
C8—C7—C12—C113.8 (3)C9—C8—S1—O2−137.71 (15)
C6—C7—C12—C32.1 (3)C7—C8—S1—O241.82 (18)
C8—C7—C12—C3179.25 (17)C9—C8—S1—O1−3.13 (18)
C4—C3—C12—C11171.62 (19)C7—C8—S1—O1176.40 (16)
N1—C3—C12—C11−4.2 (3)C9—C8—S1—N2109.19 (16)
C4—C3—C12—C7−3.7 (3)C7—C8—S1—N2−71.28 (17)
N1—C3—C12—C7−179.52 (17)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C6—H6···O20.952.423.057 (2)125
C15—H15···N3i0.952.453.395 (3)173
C14—H14···O2ii0.952.453.358 (3)161
C13—H13···N1iii0.952.573.506 (2)169
C10—H10···Cgiv0.952.823.302 (2)113

Symmetry codes: (i) −x+1/2, y+1/2, z; (ii) x, y−1, z; (iii) −x, y−1/2, −z+1/2; (iv) x+1/2, −y−1/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2737).

References

  • Bruker (2007). SAINT-Plus and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Corradini, R., Dossena, A., Galaverna, G., Marchelli, R., Panagia, A. & Sarto, G. (1997). J. Org. Chem.62, 6283–6289.
  • Hilderbrand, S. A., Lim, M. H. & Lippard, S. J. (2004). J. Am. Chem. Soc.126, 4972–4978. [PubMed]
  • Kavallieratos, K., Rosenberg, J. M., Chen, W.-Z. & Ren, T. (2005). J. Am. Chem. Soc.127, 6514–6515. [PMC free article] [PubMed]
  • Koike, T., Watanabe, T., Aoki, S., Kimura, E. & Shiro, M. (1996). J. Am. Chem. Soc.118, 12696–12703.
  • Sheldrick, G. M. (1996). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography