PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 January 1; 65(Pt 1): o53.
Published online 2008 December 10. doi:  10.1107/S1600536808040841
PMCID: PMC2967967

2,2′-Bis(4-fluoro­anilino)-3,3′-(3,6-dioxa­octane-1,8-di­yl)diquinazolin-4(3H)-one

Abstract

In the centrosymmetric title compound, C34H30F2N6O4, the dihedral angle between the quinazolinone and fluorobenzene ring planes are 71.00 (2) and 74.94 (2)° and an intra­molecular N—H(...)O interaction stabilizes the conformation. In the crystal, C—H(...)F and C—H(...)O links help to establish the packing.

Related literature

For the biological activity of quinazolinones, see: Shiba et al. (1997 [triangle]); Ding et al., 2004 [triangle]. For the crystal structures of other fused heterocyclic derivatives, see: Wang et al. (2006 [triangle]); Xu et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-00o53-scheme1.jpg

Experimental

Crystal data

  • C34H30F2N6O4
  • M r = 624.64
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-00o53-efi1.jpg
  • a = 13.923 (3) Å
  • b = 12.509 (3) Å
  • c = 18.726 (4) Å
  • β = 97.08 (3)°
  • V = 3236.6 (11) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 295 (2) K
  • 0.20 × 0.10 × 0.10 mm

Data collection

  • Bruker SMART 4K CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003 [triangle]) T min = 0.982, T max = 0.991
  • 2834 measured reflections
  • 2834 independent reflections
  • 2263 reflections with I > 2σ(I)
  • R int = 0.0123

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048
  • wR(F 2) = 0.146
  • S = 1.06
  • 2834 reflections
  • 208 parameters
  • H-atom parameters constrained
  • Δρmax = 0.30 e Å−3
  • Δρmin = −0.16 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT-Plus (Bruker, 2001 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808040841/at2676sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808040841/at2676Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Dr Xiang-Gao Meng for the X-ray data collection.

supplementary crystallographic information

Comment

Quinazolinones are important heterocycles exhibiting good biological and pharmaceutical activities. Some of these actities inclue antimicrobial, anti-inflammatory, antifungal, anticancer and AMPA receptor antagonistical properties (Shiba et al., 1997 and Ding et al., 2004). In connection with our ongoing heterocyclic synthesis and drug discovery project (Wang et al., 2006; Xu et al., 2006), we obtained the title compound by employing aza-Wittig reaction of beta-ethoxycarbonyl iminophosphorane with p-Flurophenyl isocyanate and subsequent 2-(2-(2-aminoethoxy)ethoxy)ethanamine under mild conditions. Herein, we present X-ray crystallographic analysis of the title compound, which may be used as a new precursor for obtaining bioactive molecules.

The selected bond lengths and angles are given in parameter see Table 1. In the molecule of the title compound (Fig. 1), the fused rings of quinazolinones are planar, and the phenyl (C1—C6) and (C1a—C6a) rings are twisted with respect to the two quinazolinone ring systems, making dihedral angles of 71.00 (2)° and 74.94 (2)°, respectively. The molecular conformation is stabilized by intermolecular N—H···O and O—H···N hydrogen bonds. In the crystal packing, intramolecular N—H···O and O—H···N hydrogen bonds and intermolecular C—H···F and C—H···O hydrogen bonds (Fig.2, Table 2) link the molecules, helping to stabilize the crystal structure.

Experimental

To a solution of iminophosphorane (1.28 g, 3.0 mmol) in anhydrous THF (10 mL) was added p-Fluorophenyl isocyanate (0.41 g, 3.0 mmol) under nitrogen at room temperature. After standing for 10 h at 273-278K, the solvent was removed under reduced pressure and ethyl sther/petroleum ether (1:2, 10ml) was added to precipitate triphenylphosphine oxide. After filtration the solvent was removed to give the carbodiimide, which were used directly without further purification. To the solution of carbodiimide prepared above was added a solution of 2-(2-(2-aminoethoxy)ethoxy)ethanamine (3 mmol) in THF (10 mL). The mixture was stirred for 10 h at room temperature, concentrated under reduced pressure and the recrystallized from a mixed solvent of methanol and dichloromethane (1:2 v/v) at room temperature to give the title compound.

Refinement

All H atoms were located in difference maps and treated as riding atoms with C—H = 0.93 Å, Uiso=1.2Ueq (C) for Csp2, C—H = 0.97 Å, Uiso = 1.2Ueq (C) for CH2, N—H = 0.86 Å, Uiso = 1.2Ueq (N) for NH.

Figures

Fig. 1.
The molecular structure of the title compound, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
Packing diagram for title compound, showing the hydrogen bonds stacking interactions.

Crystal data

C34H30F2N6O4F(000) = 1304
Mr = 624.64Dx = 1.282 Mg m3
Monoclinic, C2/cMelting point: 415 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 13.923 (3) ÅCell parameters from 3566 reflections
b = 12.509 (3) Åθ = 2.2–28.5°
c = 18.726 (4) ŵ = 0.10 mm1
β = 97.08 (3)°T = 295 K
V = 3236.6 (11) Å3Block, colourless
Z = 40.20 × 0.10 × 0.10 mm

Data collection

Bruker SMART 4K CCD area-detector diffractometer2834 independent reflections
Radiation source: fine-focus sealed tube2263 reflections with I > 2σ(I)
graphiteRint = 0.012
[var phi] and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)h = −16→16
Tmin = 0.982, Tmax = 0.991k = 0→14
2834 measured reflectionsl = 0→22

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.146w = 1/[σ2(Fo2) + (0.0807P)2 + 0.8957P] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2834 reflectionsΔρmax = 0.30 e Å3
208 parametersΔρmin = −0.15 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0028 (9)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.24654 (14)0.79492 (18)0.12370 (9)0.0755 (6)
C20.24527 (18)0.85820 (18)0.18204 (11)0.0885 (7)
H20.26390.92950.18080.106*
C30.21577 (17)0.81506 (16)0.24356 (10)0.0807 (6)
H30.21400.85750.28410.097*
C40.18901 (12)0.70941 (14)0.24493 (8)0.0605 (4)
C50.19174 (14)0.64790 (16)0.18485 (9)0.0705 (5)
H50.17400.57630.18580.085*
C60.22039 (15)0.69037 (18)0.12292 (9)0.0771 (6)
H60.22180.64870.08190.093*
C70.21556 (14)0.65123 (13)0.36984 (9)0.0621 (4)
C80.36454 (15)0.65449 (13)0.43630 (9)0.0675 (5)
C90.46390 (16)0.67547 (17)0.44028 (11)0.0822 (6)
H90.48930.70230.40030.099*
C100.52371 (19)0.65675 (19)0.50253 (12)0.0928 (7)
H100.58950.67130.50440.111*
C110.4878 (2)0.61653 (19)0.56277 (12)0.0948 (7)
H110.52920.60410.60480.114*
C120.3909 (2)0.59501 (16)0.56025 (10)0.0852 (6)
H120.36660.56820.60070.102*
C130.32810 (15)0.61330 (13)0.49687 (9)0.0680 (5)
C140.22605 (15)0.58965 (14)0.49317 (9)0.0704 (5)
C150.06541 (15)0.60240 (16)0.42379 (11)0.0761 (6)
H15A0.03500.65770.39240.091*
H15B0.04680.61410.47140.091*
C160.02768 (14)0.49650 (16)0.39706 (11)0.0774 (6)
H16A0.06500.43970.42250.093*
H16B−0.03930.48870.40550.093*
C17−0.00666 (15)0.39575 (15)0.28882 (13)0.0858 (6)
H17A−0.07510.39310.29390.103*
H17B0.02410.33310.31210.103*
F10.27593 (11)0.83760 (13)0.06324 (6)0.1146 (6)
N10.15482 (12)0.66559 (12)0.30729 (7)0.0698 (4)
H10.09490.64780.30560.084*
N20.17129 (11)0.61347 (11)0.42748 (7)0.0639 (4)
N70.30664 (12)0.67140 (12)0.37194 (7)0.0676 (4)
O10.18667 (12)0.55312 (13)0.54259 (7)0.0937 (5)
O20.03497 (9)0.48969 (9)0.32193 (7)0.0748 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0723 (11)0.1035 (15)0.0487 (9)−0.0327 (10)−0.0003 (8)0.0192 (9)
C20.1115 (17)0.0794 (13)0.0736 (12)−0.0417 (12)0.0075 (11)0.0167 (10)
C30.1106 (16)0.0716 (12)0.0617 (10)−0.0257 (11)0.0181 (10)0.0020 (9)
C40.0631 (10)0.0661 (10)0.0522 (9)−0.0140 (8)0.0069 (7)0.0097 (7)
C50.0824 (12)0.0691 (11)0.0603 (10)−0.0180 (9)0.0098 (9)0.0049 (8)
C60.0859 (13)0.0933 (14)0.0526 (10)−0.0194 (11)0.0099 (9)0.0005 (9)
C70.0863 (12)0.0520 (9)0.0514 (9)−0.0073 (8)0.0223 (8)0.0021 (7)
C80.0941 (13)0.0543 (10)0.0550 (9)−0.0094 (9)0.0121 (9)−0.0040 (7)
C90.0958 (15)0.0788 (13)0.0710 (12)−0.0233 (11)0.0065 (11)−0.0028 (9)
C100.1032 (17)0.0882 (15)0.0835 (14)−0.0154 (12)−0.0025 (12)−0.0092 (11)
C110.118 (2)0.0860 (15)0.0751 (14)−0.0010 (14)−0.0111 (13)−0.0055 (11)
C120.128 (2)0.0717 (12)0.0567 (10)0.0069 (12)0.0138 (11)0.0024 (9)
C130.0973 (14)0.0537 (9)0.0548 (9)0.0057 (9)0.0162 (9)−0.0011 (7)
C140.1018 (15)0.0591 (10)0.0550 (9)0.0125 (9)0.0286 (9)0.0075 (8)
C150.0861 (13)0.0765 (12)0.0737 (11)0.0247 (10)0.0416 (10)0.0188 (9)
C160.0625 (11)0.0819 (13)0.0943 (13)0.0092 (9)0.0359 (10)0.0323 (10)
C170.0731 (12)0.0562 (10)0.1317 (18)−0.0043 (9)0.0273 (12)0.0129 (10)
F10.1282 (11)0.1552 (13)0.0596 (7)−0.0636 (9)0.0091 (7)0.0307 (7)
N10.0761 (10)0.0793 (10)0.0556 (8)−0.0195 (8)0.0152 (7)0.0120 (7)
N20.0824 (10)0.0582 (8)0.0561 (8)0.0061 (7)0.0290 (7)0.0089 (6)
N70.0820 (11)0.0696 (9)0.0527 (8)−0.0186 (8)0.0142 (7)0.0019 (6)
O10.1137 (11)0.1071 (11)0.0679 (8)0.0187 (9)0.0419 (8)0.0301 (8)
O20.0723 (8)0.0614 (7)0.0970 (10)−0.0068 (6)0.0353 (7)0.0114 (6)

Geometric parameters (Å, °)

C1—C21.351 (3)C10—H100.9300
C1—C61.357 (3)C11—C121.371 (3)
C1—F11.3597 (19)C11—H110.9300
C2—C31.380 (3)C12—C131.403 (3)
C2—H20.9300C12—H120.9300
C3—C41.374 (3)C13—C141.445 (3)
C3—H30.9300C14—O11.221 (2)
C4—C51.368 (2)C14—N21.397 (2)
C4—N11.4239 (19)C15—N21.474 (2)
C5—C61.379 (2)C15—C161.489 (3)
C5—H50.9300C15—H15A0.9700
C6—H60.9300C15—H15B0.9700
C7—N71.289 (2)C16—O21.426 (2)
C7—N11.369 (2)C16—H16A0.9700
C7—N21.390 (2)C16—H16B0.9700
C8—N71.381 (2)C17—O21.419 (2)
C8—C131.397 (2)C17—C17i1.488 (5)
C8—C91.401 (3)C17—H17A0.9700
C9—C101.367 (3)C17—H17B0.9700
C9—H90.9300N1—H10.8600
C10—C111.384 (3)
C2—C1—C6122.90 (16)C11—C12—H12119.8
C2—C1—F1118.59 (19)C13—C12—H12119.8
C6—C1—F1118.50 (19)C8—C13—C12119.8 (2)
C1—C2—C3118.74 (19)C8—C13—C14119.35 (17)
C1—C2—H2120.6C12—C13—C14120.89 (18)
C3—C2—H2120.6O1—C14—N2119.99 (19)
C4—C3—C2120.08 (19)O1—C14—C13124.83 (18)
C4—C3—H3120.0N2—C14—C13115.17 (15)
C2—C3—H3120.0N2—C15—C16114.13 (15)
C5—C4—C3119.38 (16)N2—C15—H15A108.7
C5—C4—N1120.27 (15)C16—C15—H15A108.7
C3—C4—N1120.29 (16)N2—C15—H15B108.7
C4—C5—C6121.04 (18)C16—C15—H15B108.7
C4—C5—H5119.5H15A—C15—H15B107.6
C6—C5—H5119.5O2—C16—C15108.66 (14)
C1—C6—C5117.86 (18)O2—C16—H16A110.0
C1—C6—H6121.1C15—C16—H16A110.0
C5—C6—H6121.1O2—C16—H16B110.0
N7—C7—N1120.14 (14)C15—C16—H16B110.0
N7—C7—N2124.86 (16)H16A—C16—H16B108.3
N1—C7—N2115.00 (16)O2—C17—C17i109.48 (13)
N7—C8—C13122.25 (18)O2—C17—H17A109.8
N7—C8—C9118.96 (17)C17i—C17—H17A109.8
C13—C8—C9118.75 (18)O2—C17—H17B109.8
C10—C9—C8120.5 (2)C17i—C17—H17B109.8
C10—C9—H9119.8H17A—C17—H17B108.2
C8—C9—H9119.8C7—N1—C4121.22 (15)
C9—C10—C11120.9 (2)C7—N1—H1119.4
C9—C10—H10119.5C4—N1—H1119.4
C11—C10—H10119.5C7—N2—C14120.67 (16)
C12—C11—C10119.8 (2)C7—N2—C15122.16 (15)
C12—C11—H11120.1C14—N2—C15117.09 (14)
C10—C11—H11120.1C7—N7—C8117.59 (15)
C11—C12—C13120.3 (2)C17—O2—C16113.94 (14)
C6—C1—C2—C3−0.3 (4)C8—C13—C14—N2−1.5 (2)
F1—C1—C2—C3−179.8 (2)C12—C13—C14—N2178.81 (16)
C1—C2—C3—C40.4 (4)N2—C15—C16—O2−71.71 (19)
C2—C3—C4—C5−0.1 (3)N7—C7—N1—C4−4.2 (3)
C2—C3—C4—N1−177.47 (19)N2—C7—N1—C4176.50 (15)
C3—C4—C5—C6−0.4 (3)C5—C4—N1—C7113.3 (2)
N1—C4—C5—C6176.98 (17)C3—C4—N1—C7−69.4 (2)
C2—C1—C6—C5−0.2 (3)N7—C7—N2—C14−2.9 (3)
F1—C1—C6—C5179.32 (17)N1—C7—N2—C14176.34 (15)
C4—C5—C6—C10.5 (3)N7—C7—N2—C15173.61 (17)
N7—C8—C9—C10−178.14 (18)N1—C7—N2—C15−7.1 (2)
C13—C8—C9—C10−0.5 (3)O1—C14—N2—C7−177.52 (16)
C8—C9—C10—C110.2 (3)C13—C14—N2—C73.6 (2)
C9—C10—C11—C120.0 (4)O1—C14—N2—C155.8 (3)
C10—C11—C12—C130.2 (3)C13—C14—N2—C15−173.17 (15)
N7—C8—C13—C12178.24 (16)C16—C15—N2—C789.7 (2)
C9—C8—C13—C120.7 (3)C16—C15—N2—C14−93.65 (19)
N7—C8—C13—C14−1.5 (3)N1—C7—N7—C8−179.41 (15)
C9—C8—C13—C14−179.00 (17)N2—C7—N7—C8−0.2 (3)
C11—C12—C13—C8−0.5 (3)C13—C8—N7—C72.4 (3)
C11—C12—C13—C14179.17 (19)C9—C8—N7—C7179.87 (17)
C8—C13—C14—O1179.66 (17)C17i—C17—O2—C16−178.87 (17)
C12—C13—C14—O1−0.1 (3)C15—C16—O2—C17−174.79 (15)

Symmetry codes: (i) −x, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O20.862.182.7954 (19)128
C16—H16A···F1ii0.972.543.388 (2)146
C16—H16B···O1iii0.972.433.377 (2)164

Symmetry codes: (ii) −x+1/2, y−1/2, −z+1/2; (iii) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2676).

References

  • Bruker (2001). SMART and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Ding, M. W., Chen, Y. F. & Huang, N. Y. (2004). Eur. J. Org. Chem. pp. 3872–3878.
  • Sheldrick, G. M. (2003). SADABS Bruker AXS,inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shiba, S. A., El-Khamry, A. A., Shaban, M. E. & Atia, K. S. (1997). Pharmazie, 52, 189–194. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Wang, X., Zheng, A.-H. & Xu, S.-Z. (2006). Acta Cryst. E62, o4791–o4792.
  • Xu, S.-Z., Hu, Y.-G., Wang, X. & Ding, M.-W. (2006). Acta Cryst. E62, o2229–o2230.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography